SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:ltu-80480"
 

Search: onr:"swepub:oai:DiVA.org:ltu-80480" > Radar observability...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Radar observability of near-Earth objects using EISCAT 3D

Kastinen, Daniel (author)
Umeå universitet,Institutionen för fysik,Swedish Institute of Space Physics (IRF), Kiruna, Sweden.Department of Physics, Umeå University, Umeå, Sweden
Tveito, Torbjorn (author)
Department of Physics and Technology, Arctic University of Norway (UiT),Tromsø, Norway
Vierinen, Juha (author)
Department of Physics and Technology, Arctic University of Norway (UiT), Tromsø, Norway
show more...
Granvik, Mikael (author)
Luleå tekniska universitet,Rymdteknik,Department of Physics, University of Helsinki, Helsinki, Finland
show less...
 (creator_code:org_t)
2020-07-15
2020
English.
In: Annales Geophysicae. - : Copernicus Publications. - 0992-7689 .- 1432-0576. ; 38:4, s. 861-879
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Radar observations can be used to obtain accurate orbital elements for near-Earth objects (NEOs) as a result of the very accurate range and range rate measureables. These observations allow the prediction of NEO orbits further into the future and also provide more information about the properties of the NEO population. This study evaluates the observability of NEOs with the EISCAT 3D 233 MHz 5 MW high-power, large-aperture radar, which is currently under construction. Three different populations are considered, namely NEOs passing by the Earth with a size distribution extrapolated from fireball statistics, catalogued NEOs detected with ground-based optical telescopes and temporarily captured NEOs, i.e. mini-moons. Two types of observation schemes are evaluated, namely the serendipitous discovery of unknown NEOs passing the radar beam and the post-discovery tracking of NEOs using a priori orbital elements. The results indicate that 60-1200 objects per year, with diameters D > 0.01 m, can be discovered. Assuming the current NEO discovery rate, approximately 20 objects per year can be tracked post-discovery near the closest approach to Earth. Only a marginally smaller number of tracking opportunities are also possible for the existing EISCAT ultra-high frequency (UHF) system. The mini-moon study, which used a theoretical population model, orbital propagation, and a model for radar scanning, indicates that approximately seven objects per year can be discovered using 8 %-16% of the total radar time. If all mini-moons had known orbits, approximately 80-160 objects per year could be tracked using a priori orbital elements. The results of this study indicate that it is feasible to perform routine NEO post-discovery tracking observations using both the existing EISCAT UHF radar and the upcoming EISCAT 3D radar. Most detectable objects are within 1 lunar distance (LD) of the radar. Such observations would complement the capabilities of the more powerful planetary radars that typically observe objects further away from Earth. It is also plausible that EISCAT 3D could be used as a novel type of an instrument for NEO discovery, assuming that a sufficiently large amount of radar time can be used. This could be achieved, for example by time-sharing with ionospheric and space-debris-observing modes.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Annan elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Other Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)
NATURVETENSKAP  -- Fysik -- Fusion, plasma och rymdfysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Fusion, Plasma and Space Physics (hsv//eng)

Keyword

Onboard space systems
Rymdtekniska system

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view