SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:ltu-9329"
 

Search: onr:"swepub:oai:DiVA.org:ltu-9329" > On the microwave op...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

On the microwave optical properties of randomly oriented ice hydrometeors

Eriksson, Patrick, 1964 (author)
Chalmers University of Technology, Department of Earth and Space Sciences,Chalmers tekniska högskola
Jamali, Maryam (author)
Luleå tekniska universitet,Rymdteknik,Chalmers tekniska högskola,Chalmers University of Technology
Mendrok, Jana (author)
Luleå tekniska universitet,Rymdteknik,Luleå tekniska universitet (LTU),Luleå University of Technology (LTU)
show more...
Buehler, Stefan (author)
Meteorological Institute, Center for Earth System Research and Sustainability, University of Hamburg,Universität Hamburg,University of Hamburg
show less...
 (creator_code:org_t)
2015-05-05
2015
English.
In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 8:5, s. 1913-1933
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Microwave remote sensing is important for observing the mass of ice hydrometeors. One of the main error sources of microwave ice mass retrievals is that approximations around the shape of the particles are unavoidable. One common approach to represent particles of irregular shape is the soft particle approximation (SPA). We show that it is possible to define a SPA that mimics mean optical particles of available reference data over narrow frequency ranges, considering a single observation technique at the time, but that SPA does not work in a broader context. Most critically, the required air fraction varies with frequency and application, as well as with particle size. In addition, the air fraction matching established density parameterisations results in far too soft particles, at least for frequencies above 90 GHz. That is, alternatives to SPA must be found. One alternative was recently presented by Geer and Baordo (2014). They used a subset of the same reference data and simply selected as "shape model" the particle type giving the best overall agreement with observations. We present a way to perform the same selection of a representative particle shape but without involving assumptions on particle size distribution and actual ice mass contents. Only an assumption on the occurrence frequency of different particle shapes is still required. Our analysis leads to the same selection of representative shape as found by Geer and Baordo (2014). In addition, we show that the selected particle shape has the desired properties at higher frequencies as well as for radar applications. Finally, we demonstrate that in this context the assumption on particle shape is likely less critical when using mass equivalent diameter to characterise particle size compared to using maximum dimension, but a better understanding of the variability of size distributions is required to fully characterise the advantage. Further advancements on these subjects are presently difficult to achieve due to a lack of reference data. One main problem is that most available databases of precalculated optical properties assume completely random particle orientation, while for certain conditions a horizontal alignment is expected. In addition, the only database covering frequencies above 340 GHz has a poor representation of absorption as it is based on outdated refractive index data as well as only covering particles having a maximum dimension below 2 mm and a single temperature

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Rymd- och flygteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Aerospace Engineering (hsv//eng)
NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Meteorologi och atmosfärforskning (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Meteorology and Atmospheric Sciences (hsv//eng)

Keyword

Atmospheric science
Atmosfärsvetenskap

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view