SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:ltu-95572"
 

Search: onr:"swepub:oai:DiVA.org:ltu-95572" > Comparison of Const...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Comparison of Constant PID Controller and Adaptive PID Controller via Reinforcement Learning for a Rehabilitation Robot

Beck, Bradley R.G. (author)
University of Technology Sydney in Sydney, NSW
Tipper, Joanne (author)
Luleå tekniska universitet,Maskinelement,Medical & Biological Engineering, University of Technology Sydney in Sydney; School of Mechanical Engineering, University of Leeds, UK
Su, Steven (author)
School of Biomedical Engineering, University of Technology Sydney
 (creator_code:org_t)
IEEE, 2022
2022
English.
In: 2022 Australian & New Zealand Control Conference (ANZCC). - : IEEE. - 9781665498876 ; , s. 218-223
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • Effectively tuning a PID controller can be difficult without prior experience or knowledge of the system being controlled. Reinforcement learning is a tool that allows automatic PID tuning with adaptability to environmental change. This technique was utilised for a single degree-of-freedom robot designed for human interaction, proving the validity of the TD3PG algorithm for reference tracking and rehabilitation exercises. These results were measured by the root mean square error of the system and compared to a classical PID controller to determine whether the adaptability improved the system tracking ability. Results showed the classical PID controller resulted in smaller RMSE measurements for a multitude of input signals including sine waves and multi-step functions when the environment remained constant. The adaptive PID controller resulted in smaller RMSE measurements for all input signals when the environment changed to reduce the amount of torque applied to the plant, representing a motor power failure. It is believed that a classic PID controller is better suited for systems with low input frequency and low system uncertainty while adaptive PID controllers are better for systems with changing environments or input signals.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Reglerteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Control Engineering (hsv//eng)

Keyword

Adaptive Control
Human-Machine Interactions
Rehabilitation Robotics
Reinforcement Learning
Machine Elements
Maskinelement

Publication and Content Type

ref (subject category)
kon (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Beck, Bradley R. ...
Tipper, Joanne
Su, Steven
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Electrical Engin ...
and Control Engineer ...
Articles in the publication
2022 Australian ...
By the university
Luleå University of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view