SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:mau-62921"
 

Search: onr:"swepub:oai:DiVA.org:mau-62921" > Enhanced thermal st...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
LIBRIS Formathandbok  (Information om MARC21)
FältnamnIndikatorerMetadata
00006010naa a2200829 4500
001oai:DiVA.org:mau-62921
003SwePub
008231003s2021 | |||||||||||000 ||eng|
009oai:DiVA.org:uu-458318
024a https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-629212 URI
024a https://doi.org/10.1016/j.actamat.2021.1172042 DOI
024a https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4583182 URI
040 a (SwePub)maud (SwePub)uu
041 a engb eng
042 9 SwePub
072 7a ref2 swepub-contenttype
072 7a art2 swepub-publicationtype
100a Holzapfel, Damian M.u Rhein Westfal TH Aachen, Mat Chem, Kopernikusstr 10, D-52074 Aachen, Germany.4 aut
2451 0a Enhanced thermal stability of (Ti,Al)N coatings by oxygen incorporation
264 1b Elsevier,c 2021
338 a print2 rdacarrier
520 a Thermal stability of protective coatings is one of the performance-defining properties for advanced cutting and forming applications as well as for energy conversion. To investigate the effect of oxygen incorporation on the high-temperature behavior of (Ti,Al)N, metastable cubic (Ti,Al)N and (Ti,Al)(OxN1-x) coatings are synthesized using reactive arc evaporation. X-ray diffraction of (Ti,Al)N and (Ti,Al)(OxN1-x) coatings reveals that spinodal decomposition is initiated at approximately 800 degrees C, while the subsequent formation of wurtzite solid solution is clearly delayed from 1000 degrees C to 1300 degrees C for (Ti,Al)(OxN1-x) compared to (Ti,Al)N. This thermal stability enhancement can be rationalized based on calculated vacancy formation energies in combination with spatially-resolved composition analysis and calorimetric data: Energy dispersive X-ray spectroscopy and atom probe tomography data indicate a lower O solubility in wurtzite solid solution compared to cubic (Ti,Al)(O,N). Hence, it is evident that for the growth of the wurtzite, AlN-rich phase in (Ti,Al)N, only mobility of Ti and Al is required, while for (Ti,Al)(O,N), in addition to mobile metal atoms, also non-metal mobility is required. Prerequisite for mobility on the non-metal sublattice is the formation of non-metal vacancies which require larger temperatures than for the metal sublattice due to significantly larger magnitudes of formation energies for the non-metal vacancies compared to the metal vacancies. This notion is consistent with calorimetry data which indicate that the combined energy necessary to form and grow the wurtzite phase is larger by a factor of approximately two in (Ti,Al)(O,N) than in (Ti,Al)N, causing the here reported thermal stability increase. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
650 7a TEKNIK OCH TEKNOLOGIERx Materialteknikx Bearbetnings-, yt- och fogningsteknik0 (SwePub)205052 hsv//swe
650 7a ENGINEERING AND TECHNOLOGYx Materials Engineeringx Manufacturing, Surface and Joining Technology0 (SwePub)205052 hsv//eng
650 7a NATURVETENSKAPx Kemix Materialkemi0 (SwePub)104032 hsv//swe
650 7a NATURAL SCIENCESx Chemical Sciencesx Materials Chemistry0 (SwePub)104032 hsv//eng
653 a Cathodic arc evaporation
653 a Hard coatings
653 a Thermal stability
653 a TiAlN
653 a TiAlON
653 a Vacancies
653 a Aluminum metallography
653 a Aluminum nitride
653 a Calorimetry
653 a Energy conversion
653 a Energy dispersive spectroscopy
653 a III-V semiconductors
653 a Metals
653 a Oxygen
653 a Protective coatings
653 a Solid solutions
653 a Spinodal decomposition
653 a Stability
653 a Thermodynamic stability
653 a Titanium metallography
653 a Zinc sulfide
653 a Atom probe tomography
653 a Composition analysis
653 a Cutting and forming
653 a Energy dispersive X ray spectroscopy
653 a High temperature behavior
653 a Oxygen incorporation
653 a Stability enhancement
653 a Vacancy formation energies
653 a Aluminum coatings
700a Music, Denisu Malmö universitet,Institutionen för materialvetenskap och tillämpad matematik (MTM),Malmö Univ, Dept Mat Sci & Appl Math, S-20506 Malmö, Sweden.4 aut0 (Swepub:mau)al3932
700a Hans, Marcusu Rhein Westfal TH Aachen, Mat Chem, Kopernikusstr 10, D-52074 Aachen, Germany.4 aut
700a Wolff-Goodrich, Silasu Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany.4 aut
700a Holec, Davidu Univ Leoben, Dept Mat Sci, A-8700 Leoben, Austria.4 aut
700a Bogdanovski, Dimitriu Rhein Westfal TH Aachen, Mat Chem, Kopernikusstr 10, D-52074 Aachen, Germany.4 aut
700a Arndt, Mirjamu Oerlikon Balzers Coating Germany GmbH, Hohe Hum Str 22, D-79650 Schopfheim, Germany.4 aut
700a Eriksson, Anders O.u Oerlikon Surface Solut AG, Oerlikon Balzers, Iramali 18, LI-9496 Balzers, Liechtenstein.4 aut
700a Yalamanchili, Kumaru Oerlikon Surface Solut AG, Oerlikon Balzers, Iramali 18, LI-9496 Balzers, Liechtenstein.4 aut
700a Primetzhofer, Danielu Uppsala universitet,Tillämpad kärnfysik4 aut0 (Swepub:uu)danpr521
700a Liebscher, Christian H.u Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany.4 aut
700a Schneider, Jochen M.u Rhein Westfal TH Aachen, Mat Chem, Kopernikusstr 10, D-52074 Aachen, Germany.4 aut
710a Rhein Westfal TH Aachen, Mat Chem, Kopernikusstr 10, D-52074 Aachen, Germany.b Institutionen för materialvetenskap och tillämpad matematik (MTM)4 org
773t Acta Materialiad : Elsevierg 218q 218x 1359-6454x 1873-2453
8564 8u https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-62921
8564 8u https://doi.org/10.1016/j.actamat.2021.117204
8564 8u https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-458318

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view