SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:mdh-25054"
 

Search: onr:"swepub:oai:DiVA.org:mdh-25054" > Thermo-Fluid Modell...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Kyprianidis, Konstantinos G.Mälardalens högskola,Framtidens energi,Cranfield University,Future Energy Center,Chalmers tekniska högskola,Chalmers University of Technology (author)

Thermo-Fluid Modelling for Gas Turbines-Part I: Theoretical Foundation and Uncertainty Analysis

  • Article/chapterEnglish2009

Publisher, publication year, extent ...

  • 2009
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:mdh-25054
  • https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-25054URI
  • https://doi.org/10.1115/GT2009-60092DOI
  • https://research.chalmers.se/publication/127746URI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:kon swepub-publicationtype

Notes

  • In this two-part publication, various aspects of thermo-fluidmodelling for gas turbines are described and their impact onperformance calculations and emissions predictions at aircraftsystem level is assessed. Accurate and reliable fluid modellingis essential for any gas turbine performance simulation softwareas it provides a robust foundation for building advanced multidisciplinarymodelling capabilities. Caloric properties forgeneric and semi-generic gas turbine performance simulationcodes can be calculated at various levels of fidelity; selection ofthe fidelity level is dependent upon the objectives of thesimulation and execution time constraints. However, rigorousfluid modelling may not necessarily improve performancesimulation accuracy unless all modelling assumptions andsources of uncertainty are aligned to the same level. Certainmodelling aspects such as the introduction of chemical kinetics,and dissociation effects, may reduce computational speed andthis is of significant importance for radical space explorationand novel propulsion cycle assessment.This paper describes and compares fluid models, based ondifferent levels of fidelity, which have been developed for anindustry standard gas turbine performance simulation code and an environmental assessment tool for novel propulsion cycles.The latter comprises the following modules: engineperformance, aircraft performance, emissions prediction, andenvironmental impact. The work presented aims to fill thecurrent literature gap by: (i) investigating the commonassumptions made in thermo-fluid modelling for gas turbinesand their effect on caloric properties and (ii) assessing theimpact of uncertainties on performance calculations andemissions predictions at aircraft system level.In Part I of this two-part publication, a comprehensiveanalysis of thermo-fluid modelling for gas turbines is presentedand the fluid models developed are discussed in detail.Common technical models, used for calculating caloricproperties, are compared while typical assumptions made influid modelling, and the uncertainties induced, are examined.Several analyses, which demonstrate the effects of composition,temperature and pressure on caloric properties of workingmediums for gas turbines, are presented. The working mediumsexamined include dry air and combustion products for variousfuels and H/C ratios. The errors induced by ignoringdissociation effects are also discussed.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Sethi, VishalCranfield University (author)
  • Ogaji, Stephen O. T.Cranfield University (author)
  • Pilidis, PericlesCranfield University (author)
  • Singh, RitiCranfield University (author)
  • Kalfas, Anestis I.Aristotle University of Thessaloniki (author)
  • Mälardalens högskolaFramtidens energi (creator_code:org_t)

Related titles

  • In:ASME TURBO EXPO 2009 Proceedings, GT2009-60092

Internet link

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view