SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:mdh-64951"
 

Search: onr:"swepub:oai:DiVA.org:mdh-64951" > System-Level Assess...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

System-Level Assessment of a Partially Distributed Hybrid Electric Propulsion System

Sahoo, Smruti (author)
Mälardalens universitet,Framtidens energi
Kavvalos, Mavroudis (author)
Mälardalens universitet,Framtidens energi
Diamantidou, Eirini (author)
Mälardalens universitet,Framtidens energi
show more...
Kyprianidis, Konstantinos (author)
Mälardalens universitet,Framtidens energi
show less...
 (creator_code:org_t)
2023-01-11
2023
English.
In: Journal of engineering for gas turbines and power. - : American Society of Mechanical Engineers (ASME). - 0742-4795 .- 1528-8919. ; 145:2
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Hybrid electric propulsion system-based aircraft designs are paving the path toward a future greener aviation sector and thus, have been the major focus of the aeronautical community. The fuel efficiency improvement associated to such propulsion system configurations are realized at the aircraft level. In order to assess such benefits, a radical shift in the subsystem modeling requirements and of a conceptual-level aircraft design environment are necessary. This work highlights performance model development work pertaining to different hybrid electric propulsion system components and the development of a design platform that facilitates tighter integration of different novel propulsion system disciplines at the aircraft level. Furthermore, a serial/parallel partially distributed hybrid electric propulsion system is chosen as the candidate configuration to assess the potential benefits and associated tradeoffs by conducting multidisciplinary design space exploration studies. It is established that the distributed hybrid electric configurations pose the potential for aircraft structural weight reduction benefits. The study further illustrates the impacts of onboard charging during the low thrust requirement segments, quantitatively. The provision of onboard charging lowers the potential for block fuel savings, and improvement in battery specific energy can make it more promising, which is also dependent on the hybridization power level. It is established that distributed propulsion system configurations particularly benefit from a high aspect ratio wing structure, which manifests in high hybridization power levels. A high voltage level transmission system with more efficient electrical components enhances opportunities for achieving block fuel saving benefits.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Rymd- och flygteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Aerospace Engineering (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Sahoo, Smruti
Kavvalos, Mavrou ...
Diamantidou, Eir ...
Kyprianidis, Kon ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Mechanical Engin ...
and Aerospace Engine ...
Articles in the publication
Journal of engin ...
By the university
Mälardalen University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view