SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:miun-46686"
 

Search: onr:"swepub:oai:DiVA.org:miun-46686" > Energy, exergy, eco...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Energy, exergy, economic, environment, exergo-environment based assessment of amine-based hybrid solvents for natural gas sweetening

Ellaf, A. (author)
Ali Ammar Taqvi, S. (author)
Zaeem, D. (author)
show more...
Siddiqui, F. U. H. (author)
Kazmi, B. (author)
Idris, Alamin (author)
Mittuniversitetet,Institutionen för naturvetenskap, design och hållbar utveckling (2023-)
Alshgari, R. A. (author)
Mushab, M. S. S. (author)
show less...
 (creator_code:org_t)
Elsevier BV, 2023
2023
English.
In: Chemosphere. - : Elsevier BV. - 0045-6535 .- 1879-1298. ; 313
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Natural gas is the cleanest form of fossil fuel that needs to be purified from CO2 and H2S to diminish harmful emissions and provide feasible processing. The conventional chemical and physical solvents used for this purpose have many drawbacks, including corrosion, solvent loss, high energy requirement, and the formation of toxic compounds, which ultimately disrupt the process and affect the environment. Hybrid solvents have lately been researched to cater to these liabilities and enhance process economics. This study screened eight solvents based on CO2 selectivity viscosity, absorption enthalpy, corrosivity, working capacity, specific heat, and vapor pressure. From the screened solvents, ten cases of hybrid solvents are simulated and optimized on Aspen HYSYS®. Furthermore, 5Es (Energy, Exergy, Economic, Environmental, and Exergy-environmental) analyses were performed on optimized cases, and results were compared with the base case, MEA (30 wt%). The hybrid blend of Sulfolane and MDEA with weight percentages of 6% and 24%, respectively, showed the highest energy savings of 20% concerning the base case. In addition, it offered 93% savings in exergy destruction and 17.26% in the total operating cost of the process. It is also promising to the environment due to reduced entropy sent to the ecosystem and controlled CO2 emissions. Therefore, the blend of Sulfolane and MDEA is proposed to Supersede the conventional solvent MEA for the natural gas sweetening process. 

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)

Keyword

Amine
Hybrid solvent
Natural gas sweetening
Process analysis
Solvent selection

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view