SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:miun-9211"
 

Search: onr:"swepub:oai:DiVA.org:miun-9211" > New insights in pap...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

New insights in paper forming from particle-level process simulations

Lindström, Stefan B, 1974- (author)
Mittuniversitetet,Institutionen för naturvetenskap, teknik och matematik (-2012),The forest as a resource,Linköping university
Kulachenko, Artem (author)
KTH,Hållfasthetslära (Avd.),KCL Science and Consulting
Uesaka, Tetsu (author)
FPInnovations,Mid Sweden University
 (creator_code:org_t)
Kuopio, Finland : University of Kuopio, 2009
2009
English.
In: Papermaking Research Symposium 2009. - Kuopio, Finland : University of Kuopio. - 9789512710164 ; , s. 38-
  • Conference paper (other academic/artistic)
Abstract Subject headings
Close  
  • By virtue of the recent developments in simulation techniques for fibre suspensions flows, it is now possible to directly simulate forming of the paper sheet at a particle level under realistic flow conditions. This opens up a window of opportunity to better understand the microscale development of the paper structure, and to attribute particular features of the structure to different drainage elements.The simulations are based on a particle-level fibre suspension model, in which fibres are represented by chains of cylindrical fibre segments. The fibre model includes curled shapes and the torsion and bending of the fibres. It also captures the two-way interactions between the fibres and the fluid phase. The fluid motion is integrated from the Navier--Stokes equations.To illustrate the usage of the simulation tool, a sample parametric study of the effects of different fibre furnishes on the paper structure and wet strength is presented. Such an investigation could almost as easily have been performed with experiments. Simulations, however, have some advantages: First, the cost is almost nothing as compared to pilot trials. Secondly, the parameters of the simulations can be controlled one at a time, whereas in pilot trials, changing one process parameter will affect the others. Thirdly, every detail of the evolving paper structure is accessible at every instant in the simulations. That is, the forming process needs no longer be considered a "black box". Simulations also have some drawbacks. For instance, it is not possible to include the smallest particles, due to their vast number, while maintaining sufficiently large flow geometry. Therefore, simulations must target paper grades of low fines contents.In this communication, the pros and cons of particle-level simulations are discussed, and put into the context of previous forming and dewatering models in the literature. The development of the paper microstructure predicted in the simulations shows that thickening is the dominant forming mechanism, while filtration only occurs in the most dilute end of the typical range of consistencies used in the industry. This predicted behaviour is compared with the conventional view of dewatering, which holds filtration as the dominant forming mechanism. 

Subject headings

LANTBRUKSVETENSKAPER  -- Lantbruksvetenskap, skogsbruk och fiske -- Skogsvetenskap (hsv//swe)
AGRICULTURAL SCIENCES  -- Agriculture, Forestry and Fisheries -- Forest Science (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Pappers-, massa- och fiberteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Paper, Pulp and Fiber Technology (hsv//eng)

Keyword

Fiber suspension
Papermaking
Paper structure
Simulation
Forest engineering
Skogsteknik

Publication and Content Type

vet (subject category)
kon (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view