SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:oru-113373"
 

Search: onr:"swepub:oai:DiVA.org:oru-113373" > Postinjury cyclospo...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Postinjury cyclosporin a administration limits axonal damage and disconnection in traumatic brain injury

Büki, Andras, 1966- (author)
Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
Okonkwo, David O. (author)
Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
Povlishock, John T. (author)
Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
 (creator_code:org_t)
Mary Ann Liebert, 1999
1999
English.
In: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 16:6, s. 511-521
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Recent observations concerning presumed calcium-induced mitochondrial damage and focal intraaxonal proteolysis in the pathogenesis of traumatic axonal injury (TAI) have opened new perspectives for therapeutic intervention. Studies from our laboratory demonstrated that cyclosporin A (CsA), a potent inhibitor of Ca2+-induced mitochondrial damage, administered 30 min prior to traumatic brain injury preserved mitochondrial integrity in those axonal foci destined to undergo delayed disconnection. We attributed this neuroprotection to the inhibition by CsA of mitochondrial permeability transition (MPT). Additional experiments proved that CsA pretreatment also significantly reduced calcium-induced, calpain-mediated spectrin proteolysis (CMSP) and neurofilament compaction (NFC), pivotal events in the pathogenesis of axonal failure and disconnection. Given these provocative findings the goal of the current study was to evaluate the potential of CsA to inhibit calcium-induced axonal damage in a more clinically relevant postinjury treatment paradigm. To this end, cyclosporin A was administered intrathecally to Sprague Dawley rats 30 min following impact acceleration traumatic brain injury. The first group of animals were sacrificed 120 min postinjury and the density of CMSP and NFC immunoreactive damaged axonal segments of CsA-treated and vehicle-treated injured animals were quantitatively analyzed. A second group of CsA- versus vehicle-treated rats was sacrificed at 24 h postinjury to compare the density of damaged axons displaying beta amyloid precursor protein (APP) immunoreactivity, a signature protein of axonal perturbation and disconnection. Postinjury CsA administration resulted in a significant decrease (>60%) in CMSP/NFC immunoreactivity in corticospinal tracts and medial longitudinal fasciculi. A similar decrease was detected in the density of APP immunoreactive damaged axons, indicating an attenuation of axonal disconnection at 24 h postinjury in CsA-treated animals. These results once again suggest that the maintenance of the functional integrity of the mitochondria can prevent TAI, presumably via the preservation of the local energy homeostasis of the axon. Moreover and perhaps more importantly, these studies also demonstrate the efficacy of CsA administration when given in the early posttraumatic period. Collectively, our findings suggest that a therapeutic window exists for the use of drugs targeting mitochondria and energy regulation in traumatic brain injury.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Neurologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Neurology (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Büki, Andras, 19 ...
Okonkwo, David O ...
Povlishock, John ...
About the subject
MEDICAL AND HEALTH SCIENCES
MEDICAL AND HEAL ...
and Clinical Medicin ...
and Neurology
Articles in the publication
Journal of Neuro ...
By the university
Örebro University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view