SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:oru-86874"
 

Search: onr:"swepub:oai:DiVA.org:oru-86874" > Non-enhanced single...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Non-enhanced single-energy computed tomography of urinary stones

Jendeberg, Johan, 1972- (author)
Örebro universitet,Institutionen för medicinska vetenskaper
Lidén, Mats, 1976- (thesis advisor)
Örebro universitet,Institutionen för medicinska vetenskaper,Region Örebro län
Thunberg, Per, docent, 1968- (thesis advisor)
Örebro universitet,Institutionen för medicinska vetenskaper
show more...
Magnusson, Anders, professor (opponent)
Uppsala Akademiska sjukhus
show less...
 (creator_code:org_t)
ISBN 9789175293684
Örebro : Örebro University, 2021
English 85 s.
Series: Örebro Studies in Medicine, 1652-4063 ; 229
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Computed tomography (CT) is the mainstay imaging method for urinary stones.The aim of this thesis was to optimize the information obtained from the initial CT scan to allow a well-founded diagnosis and prognosis, and to guide the clinician as early and as far as possible in the further treatment of urinary stone disease.We examined CT scan parameters with regards to their importance for prediction of spontaneous ureteral stone passage, the impact of interreader variability of stone size estimates on this prediction, and the predictive accuracy of a semi-automated, three-dimensional (3D) segmentation algorithm. We also developed and tested the ability of a machine learning algorithm to classify pelvic calcifications into ureteral stones and phleboliths.Using single-energy CT, three quantitative methods for classification of stone composition into uric acid and non-uric acid stones in vivo were prospectively validated, using dual-energy CT as reference.Our results show that spontaneous ureteral stone passage can be predicted with high accuracy, with knowledge of stone size and position. The interreader variability in the size estimation has a large impact on the predicted outcome, but can be eliminated through a 3D segmentation algorithm. Which size estimate we use is of minor importance, but it is important that we use the chosen estimate consistently. A machine learning algorithm can differentiate distal ureteral stones from phleboliths, but more than local features are needed to reach optimal discrimination.A single-energy CT method can distinguish uric acid from non-uric acid stones in vivo with accuracy comparable to dual-energy CT.In conclusion, single-energy CT not only detects a urinary stone, but can also provide us with a prediction regarding spontaneous stone passage and a classification of stone type into uric acid and non-uric acid.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Kirurgi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Surgery (hsv//eng)

Keyword

Diagnostic
CT
urinary stone
kidney stone
urolithiasis
phlebolith
uric acid
spontaneous passage
CNN
artificial intelligence

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Jendeberg, Johan ...
Lidén, Mats, 197 ...
Thunberg, Per, d ...
Magnusson, Ander ...
About the subject
MEDICAL AND HEALTH SCIENCES
MEDICAL AND HEAL ...
and Clinical Medicin ...
and Surgery
Parts in the series
Örebro Studies i ...
By the university
Örebro University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view