SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:ri-27780"
 

Search: onr:"swepub:oai:DiVA.org:ri-27780" > Antimicrobial pepti...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Antimicrobial peptides in the treatment of infectious and inflammatory conditions : Preclinical studies of mechanism of action, efficacy, and safety

Björn, Camilla (author)
Gothenburg University,Göteborgs universitet,RISE,Medicinteknik,University of Gothenburg, Sweden; Sahlgrenska Academy, Sweden,Institutionen för medicin, avdelningen för molekylär och klinisk medicin,Institute of Medicine, Department of Molecular and Clinical Medicine
 (creator_code:org_t)
ISBN 9789162899257
Göteborg : Göteborgs universitet, 2016
English 97 s.
Series: Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • The rapid emergence of antibiotic-resistant microbes worldwide and the urgent need of new antimicrobial agents have stimulated interest in antimicrobial peptides (AMPs) as new therapeutics for treatment of infectious diseases. AMPs are present in all living species and constitute an important part of the innate immune system in multicellular organisms, including humans. AMPs display a remarkably broad spectrum of antimicrobial activity covering both Gram-positive and Gram-negative bacteria, including many antibiotic-resistant strains, as well as fungi, viruses, and protozoa. Further, in contrast to many conventional antibiotics, AMPs rapidly kill bacteria instead of just inhibiting bacterial growth. In addition, AMPs act as modulators of the innate immune system and, importantly, bacteria seem less efficient in developing resistance towards AMPs than towards conventional antibiotics. Together these properties make AMPs highly attractive as a new class of antimicrobials, with clinical potential also extending to diseases where inflammation is part of the pathology. The aim of this thesis was to study novel AMPs with respect to their mechanism of action (MOA), antimicrobial spectrum, propensity to select for resistance, and in vivo efficacy and safety. To achieve this, we used a number of in vitro and in vivo assays, together generating a comprehensive preclinical evaluation of the peptides. The hypothesis was that the AMPs in this thesis have potential to be developed as therapeutic agents for several infectious and inflammatory conditions, including treatment of skin and soft tissue infections and prevention of postsurgical adhesion formation. The results showed that all AMPs tested (i.e. PXL03, PXL150, HLR1r, and five variants of CEN1 HC-Br) had broad antimicrobial spectra in vitro with varying sensitivity to salt and serum. Furthermore, PXL150 caused a rapid permeabilization of bacterial membrane in vitro, indicating that this is at least one part of the MOA of this peptide. Under selection pressure in vitro, bacteria did not develop resistance to the peptides tested, i.e. PXL150 and CEN1 HC. Interestingly, all peptides showed anti-inflammatory activity by inhibiting the secretion of proinflammatory mediators from stimulated human cell lines. In addition, PXL01, PXL150, and HLR1r demonstrated fibrinolytic ability in vitro by suppressing the release of plasminogen activator inhibitor-1 (PAI-1). In ex vivo and in vivo skin/wound infection models, the peptides reduced the number of viable bacteria and yeast cells. Further, PXL01 decreased postsurgical adhesion formation in vivo. Notably, nonclinical safety studies showed that PXL150 was safe and well tolerated. In conclusion, several of the peptides evaluated in this thesis demonstrated a promising preclinical efficacy and safety profile motivating further development as drug candidates for local treatment of infectious and inflammatory conditions.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Farmakologi och toxikologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Pharmacology and Toxicology (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Infektionsmedicin (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Infectious Medicine (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Medicinsk bioteknologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Medical Biotechnology (hsv//eng)

Keyword

antimicrobial peptides
AMPs
innate immunity
infection
inflammation
mechanism of action
efficacy
safety
antimicrobial resistance
antibiotic resistance
Antimicrobial peptides
AMPs
innate immunity
infection
inflammation
mechanism of action
efficacy
safety
antimicrobial resistance
antibiotic resistance

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Björn, Camilla
About the subject
MEDICAL AND HEALTH SCIENCES
MEDICAL AND HEAL ...
and Basic Medicine
and Pharmacology and ...
MEDICAL AND HEALTH SCIENCES
MEDICAL AND HEAL ...
and Clinical Medicin ...
and Infectious Medic ...
MEDICAL AND HEALTH SCIENCES
MEDICAL AND HEAL ...
and Medical Biotechn ...
Parts in the series
By the university
RISE
University of Gothenburg

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view