SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:ri-64320"
 

Search: onr:"swepub:oai:DiVA.org:ri-64320" > Comparison of co-re...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Comparison of co-refining of fast pyrolysis oil from Salix via catalytic cracking and hydroprocessing

Johansson, Ann-Christine (author)
RISE,Bioraffinaderi och energi
Bergvall, Niklas (author)
RISE,Bioraffinaderi och energi
Molinder, Roger (author)
RISE
show more...
Wikberg, Elena (author)
RISE,Bioraffinaderi och energi
Niinipuu, Mirva, 1988- (author)
RISE,Bioraffinaderi och energi
Sandström, Linda (author)
RISE,Bioraffinaderi och energi
show less...
 (creator_code:org_t)
Elsevier Ltd, 2023
2023
English.
In: Biomass and Bioenergy. - : Elsevier Ltd. - 0961-9534 .- 1873-2909. ; 172
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Lignocellulosic biomass from energy crops, i.e., short rotation coppice willows such as Salix spp., can be used as feedstock for production of transportation biofuels. Biomass conversion via fast pyrolysis followed by co-refining with fossil oil in existing refinery infrastructure could enable a fast introduction of large-scale production of biofuels. In this study, Salix was first liquefied using ablative fast pyrolysis in a pilot scale unit. The resulting pyrolysis oil, rich in oxygenates, was thereafter co-refined in 20 wt% ratio with fossil feedstock using two separate technologies, a fluidized catalytic cracking (FCC) laboratory unit and a continuous slurry hydroprocessing pilot plant. In the FCC route, the pyrolysis oil was cracked at 798 K using a commercial FCC catalyst at atmospheric pressure, while in the hydroprocessing route, the oil was processed at 693 K and a hydrogen pressure of 15 MPa in the presence of an unsupported molybdenum sulfide catalyst. Both routes resulted in significant deoxygenation (97 wt% versus 93 wt%). It is feasible to co-refine pyrolysis oil using both methods, the main difference being that the hydroprocessing results in a significantly higher biogenic carbon yield from the pyrolysis oil to liquid and gaseous hydrocarbon products (92 wt%) but would in turn require input of H2. In the cracking route, besides the liquid product, a significant part of the biogenic carbon ends up as gas and as coke on the catalyst. The choice of route depends, among other factors, on the available amount of bio-oil and refining infrastructures. © 2023 The Authors

Subject headings

LANTBRUKSVETENSKAPER  -- Annan lantbruksvetenskap -- Förnyelsebar bioenergi (hsv//swe)
AGRICULTURAL SCIENCES  -- Other Agricultural Sciences -- Renewable Bioenergy Research (hsv//eng)

Keyword

Biofuels
Co-refining
Fast pyrolysis
Fluidized catalytic cracking
Hydroprocessing
Salix
Atmospheric pressure
Bioconversion
Carbon
Catalysts
Crops
Feedstocks
Fluidization
Fluidized beds
Molybdenum compounds
Pilot plants
Refining
Sulfur compounds
Biogenics
Fast pyrolysis oil
Fluidized catalytic crackings
Lignocellulosic biomass
Pyrolysis oil
]+ catalyst
biofuel
catalyst
cracking (fracture)
pyrolysis
refining industry

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view