SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-106195"
 

Search: onr:"swepub:oai:DiVA.org:su-106195" > Folding of Aquapori...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Folding of Aquaporin 1 : Multiple evidence that helix 3 can shift out of the membrane core

Virkki, Minttu T. (author)
Stockholms universitet,Institutionen för biokemi och biofysik,Science for Life Laboratory (SciLifeLab),Stockholm University, Solna, Sweden
Agrawal, Nitin (author)
Åbo Akademi, Turku, Finland
Edsbäcker, Elin (author)
Karolinska Institutet,Stockholms universitet,Institutionen för biokemi och biofysik,Science for Life Laboratory (SciLifeLab),Stockholm University, Solna, Sweden
show more...
Cristobal, Susana (author)
Linköpings universitet,Avdelningen för cellbiologi,Hälsouniversitetet,University of the Basque Country, Leioa, Spain
Elofsson, Arne (author)
Stockholms universitet,Institutionen för biokemi och biofysik,Science for Life Laboratory (SciLifeLab),Stockholm University, Solna, Sweden
Kauko, Anni (author)
Åbo Akademi, Turku, Finland
show less...
 (creator_code:org_t)
2014-05-14
2014
English.
In: Protein Science. - : Wiley. - 0961-8368 .- 1469-896X. ; 23:7, s. 981-992
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The folding of most integral membrane proteins follows a two-step process: initially, individual transmembrane helices are inserted into the membrane by the Sec translocon. Thereafter, these helices fold to shape the final conformation of the protein. However, for some proteins, including Aquaporin 1 (AQP1), the folding appears to follow a more complicated path. AQP1 has been reported to first insert as a four-helical intermediate, where helix 2 and 4 are not inserted into the membrane. In a second step, this intermediate is folded into a six-helical topology. During this process, the orientation of the third helix is inverted. Here, we propose a mechanism for how this reorientation could be initiated: first, helix 3 slides out from the membrane core resulting in that the preceding loop enters the membrane. The final conformation could then be formed as helix 2, 3, and 4 are inserted into the membrane and the reentrant regions come together. We find support for the first step in this process by showing that the loop preceding helix 3 can insert into the membrane. Further, hydrophobicity curves, experimentally measured insertion efficiencies and MD-simulations suggest that the barrier between these two hydrophobic regions is relatively low, supporting the idea that helix 3 can slide out of the membrane core, initiating the rearrangement process.

Subject headings

NATURVETENSKAP  -- Biologi -- Biokemi och molekylärbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biochemistry and Molecular Biology (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine (hsv//eng)
NATURVETENSKAP  -- Biologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences (hsv//eng)

Keyword

membrane protein
translocon recognition
protein folding
hydrophobicity
molecular dynamics

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view