SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-11919"
 

Search: onr:"swepub:oai:DiVA.org:su-11919" > Vortex generation i...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Vortex generation in protoplanetary disks with an embedded giant planet

de Val Borro, Miguel (author)
Stockholms universitet,Institutionen för astronomi
Artymowicz, Pawel (author)
Stockholms universitet,Institutionen för astronomi
D'Angelo, G (author)
show more...
Peplinski, Adam (author)
Stockholms universitet,Institutionen för astronomi
show less...
 (creator_code:org_t)
2007-06-26
2007
English.
In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 471:3, s. 1043-1055
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Context: Vortices in protoplanetary disks can capture solid particles and form planetary cores within shorter timescales than those involved in the standard core-accretion model. Aims: We investigate vortex generation in thin unmagnetized protoplanetary disks with an embedded giant planet with planet to star mass ratio 10-4 and 10-3.Methods: Two-dimensional hydrodynamical simulations of a protoplanetary disk with a planet are performed using two different numerical methods. The results of the non-linear simulations are compared with a time-resolved modal analysis of the azimuthally averaged surface density profiles using linear perturbation theory.Results: Finite-difference methods implemented in polar coordinates generate vortices moving along the gap created by Neptune-mass to Jupiter-mass planets. The modal analysis shows that unstable modes are generated with growth rate of order 0.3 ΩK for azimuthal numbers m=4,5,6, where ΩK is the local Keplerian frequency. Shock-capturing Cartesian-grid codes do not generate very much vorticity around a giant planet in a standard protoplanetary disk. Modal calculations confirm that the obtained radial profiles of density are less susceptible to the growth of linear modes on timescales of several hundreds of orbital periods. Navier-Stokes viscosity of the order ν=10-5 (in units of a2 Ωp) is found to have a stabilizing effect and prevents the formation of vortices. This result holds at high resolution runs and using different types of boundary conditions.Conclusions: Giant protoplanets of Neptune-mass to Jupiter-mass can excite the Rossby wave instability and generate vortices in thin disks. The presence of vortices in protoplanetary disks has implications for planet formation, orbital migration, and angular momentum transport in disks.

Subject headings

NATURVETENSKAP  -- Fysik -- Astronomi, astrofysik och kosmologi (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Astronomy, Astrophysics and Cosmology (hsv//eng)

Keyword

planet and satellites: general
accretion
accretion disks
hydrodynamics
instabilities
methods: numerical
Astronomy and astrophysics
Astronomi och astrofysik

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
de Val Borro, Mi ...
Artymowicz, Pawe ...
D'Angelo, G
Peplinski, Adam
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Physical Science ...
and Astronomy Astrop ...
Articles in the publication
Astronomy and As ...
By the university
Stockholm University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view