SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-134748"
 

Search: onr:"swepub:oai:DiVA.org:su-134748" > Paleoglaciology of ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Paleoglaciology of the Tian Shan and Altai Mountains, Central Asia

Blomdin, Robin, 1986- (author)
Stockholms universitet,Institutionen för naturgeografi,Geomorphology and Glaciology
Stroeven, Arjen P., Professor (thesis advisor)
Stockholms universitet,Institutionen för naturgeografi
Hättestrand, Clas, Professor (thesis advisor)
Stockholms universitet,Institutionen för naturgeografi
show more...
Harbor, Jonathan M., Professor (thesis advisor)
Stockholms universitet,Institutionen för naturgeografi,Purdue University, USA
Owen, Lewis, Professor (opponent)
University of Cincinnati, USA
show less...
 (creator_code:org_t)
ISBN 9789176495674
Stockholm : Department of Physical Geography, Stockholm University, 2016
English 34 s.
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • The mountain-systems of Central Asia, act as barriers to atmospheric circulation patterns, which in turn impose striking climate gradients across the region. Glaciers are sensitive indicators of climate change and respond to changes in climate gradients over time by advancing during cold and wet periods and receding during warm and dry periods. The aim of this thesis is to investigate whether there are large-scale patterns in how past glaciers in the Tian Shan and the Altai Mountains of Central Asia responded to climate change. Multiple methods have been used, including: remote sensing, terrain analysis, field investigations, and cosmogenic nuclide (CN) dating. The glacial landform records indicate that the region experienced mainly alpine-style glaciations in the past. Large complexes of ice-marginal moraines in high elevation basins are evidence of outlet glaciers sourced from large valley glaciers, ice caps and ice-fields, and these moraine sequences, record the maximum extent of paleoglaciation. In the Ikh-Turgen Mountains, located in the continental, eastern Altai Mountains, deglaciation of these moraines occurred during marine oxygen isotope stage (MIS) 3 at ~45 ka. This is consistent with a colder and wetter climate during this time, inferred from ice core and lake level proxies. Another deglacial phase occurred during MIS 2 at ~23 ka, synchronous with the global Last Glacial Maximum. In the Russian Altai Mountains, lobate moraines in the Chuya Basin indicate deglaciation at ~19 ka, by a highly dynamic paleoglacier in the Chagan-Uzun catchment, which experienced surge-like behaviour. Furthermore, across the Tian Shan, an evaluation of new and existing CN glacial chronologies (25 dated moraines) indicates that only one regional glacial stage, between 15 and 28 ka (MIS 2), can be defined and spatially correlated across the region. These paleoglaciers were mainly restricted to valleys as a result of arid conditions during this time and variation in their extents is interpreted to reflect topographic modulation on regional climate. The ages of the oldest evidence for robust local glacial stages in the Tian Shan are not yet well constrained, however, moraines in the central Kyrgyz Tian Shan and the eastern Chinese Tian Shan have apparent minimum ages overlapping with MIS 5 and MIS 3 (with missing MIS 4 and 6 stages). However, different geological processes, such as inheritance and post-depositional shielding (e.g. deposition by surging glaciers or hummocky terrain deposition), have influenced the dating resolution, making several moraine ages inappropriate for regional comparison. Finally, to quantify regional patterns of paleoglaciation, the hypsometry (area-elevation distribution) of glacial landforms is used to estimate average paleo equilibrium line altitudes for the region. This analysis shows that while present-day ELAs mirror strong climate gradients, paleoglaciation patterns were characterised by more gentle ELA gradients. The paleo-ELA depressions across Central Asia were most prominent in the continental southern and eastern regions (500–700 m). Finally, the results from this thesis, show that Central Asia was repeatedly glaciated in the past, but underscore the importance of considering 1) catchment characteristics and styles of glaciation and 2) other non-climatic factors controlling glacier dynamics when interpreting CN chronologies to make paleoclimate inference.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Naturgeografi (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Physical Geography (hsv//eng)

Keyword

Paleoglaciology
glacial geomorphological mapping
cosmogenic nuclide dating
Tian Shan
Altai Mountains
Physical Geography
naturgeografi

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view