SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-145848"
 

Search: onr:"swepub:oai:DiVA.org:su-145848" > Palaeo leaf economi...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Palaeo leaf economics reveal a shift in ecosystem function associated with the end-Triassic mass extinction event

Soh, W. K. (author)
Wright, I. J. (author)
Bacon, K. L. (author)
show more...
Lenz, T. I. (author)
Steinthorsdottir, Margret (author)
Stockholms universitet,Institutionen för geologiska vetenskaper,Swedish Museum of Natural History, Sweden
Parnell, A. C. (author)
McElwain, J. C. (author)
show less...
 (creator_code:org_t)
2017-07-17
2017
English.
In: Nature Plants. - : Springer Science and Business Media LLC. - 2055-026X .- 2055-0278. ; 3:8
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Climate change is likely to have altered the ecological functioning of past ecosystems, and is likely to alter functioning in the future; however, the magnitude and direction of such changes are difficult to predict. Here we use a deep-time case study to evaluate the impact of a well-constrained CO 2 -induced global warming event on the ecological functioning of dominant plant communities. We use leaf mass per area (LMA), a widely used trait in modern plant ecology, to infer the palaeoecological strategy of fossil plant taxa. We show that palaeo-LMA can be inferred from fossil leaf cuticles based on a tight relationship between LMA and cuticle thickness observed among extant gymnosperms. Application of this new palaeo-LMA proxy to fossil gymnosperms from East Greenland reveals significant shifts in the dominant ecological strategies of vegetation found across the Triassic-Jurassic transition. Late Triassic forests, dominated by low-LMA taxa with inferred high transpiration rates and short leaf lifespans, were replaced in the Early Jurassic by forests dominated by high-LMA taxa that were likely to have slower metabolic rates. We suggest that extreme CO2-induced global warming selected for taxa with high LMA associated with a stress-tolerant strategy and that adaptive plasticity in leaf functional traits such as LMA contributed to post-warming ecological success.

Subject headings

NATURVETENSKAP  -- Biologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view