SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-17320"
 

Search: onr:"swepub:oai:DiVA.org:su-17320" > Anatomizing the Oce...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Anatomizing the Ocean´s role in ENSO changes under global warming

Yang, Haijun (author)
Zhang, Qiong (author)
Stockholms universitet,Meteorologiska institutionen (MISU)
 (creator_code:org_t)
2008
2008
English.
In: Journal of climate. - 1520-0442. ; 21:24, s. 6539-6555
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • A revisit on observations shows that the tropical El Niño–Southern Oscillation (ENSO) variability, after removing both the long-term trend and decadal variation of the background climate, has been enhanced by as much as 50% during the past 50 yr. This is inconsistent with the changes in the equatorial atmosphere, which shows a slowdown of the zonal Walker circulation and tends to stabilize the tropical coupling system. The ocean role is highlighted in this paper. The enhanced ENSO variability is attributed to the strengthened equatorial thermocline that acts as a destabilizing factor of the tropical coupling system. To quantify the dynamic effect of the ocean on the ENSO variability under the global warming, ensemble experiments are performed using a coupled climate model [Fast Ocean Atmosphere Model (FOAM)], following the “1pctto2x” scenario defined in the Intergovernmental Panel on Climate Change (IPCC) reports. Term balance analyses on the temperature variability equation show that the anomalous upwelling of the mean vertical temperature gradient (referred as the “local term”) in the eastern equatorial Pacific is the most important destabilizing factor to the temperature variabilities. The magnitude of local term and its change are controlled by its two components: the mean vertical temperature gradient Tz and the “virtual vertical heat flux” −w′T′. The former can be viewed as the background of the latter and these two components are positively correlated. A stronger Tz is usually associated with a bigger upward heat flux −w′T′, which implies a bigger impact of thermocline depth variations on SST. The Tz is first enhanced during the transient stage of the global warming with a 1% yr−1 increase of CO2, and then reduced during the equilibrium stage with a fixed doubled CO2. This turnaround in Tz determines the turnaround of ENSO variability in the entire global warming period.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Meteorologi och atmosfärforskning (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Meteorology and Atmospheric Sciences (hsv//eng)

Keyword

Meteorology
Meteorologi

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Yang, Haijun
Zhang, Qiong
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Earth and Relate ...
and Meteorology and ...
Articles in the publication
Journal of clima ...
By the university
Stockholm University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view