SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-176269"
 

Search: onr:"swepub:oai:DiVA.org:su-176269" > Carbon trace gas dy...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Carbon trace gas dynamics in subarctic lakes

Jansen, Joachim, 1989- (author)
Stockholms universitet,Institutionen för geologiska vetenskaper
Crill, Patrick, Professor (thesis advisor)
Stockholms universitet,Institutionen för geologiska vetenskaper
Lorke, Andreas, Professor (opponent)
Institute for Environmental Sciences, Universität Koblenz-Landau, Germany
 (creator_code:org_t)
ISBN 9789177979456
Stockholm : Department of Geological Sciences, Stockholm University, 2020
English 56 s.
Series: Meddelanden från Stockholms universitets institution för geologiska vetenskaper ; 379
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Northern lakes are important sources of greenhouse gases carbon dioxide and methane to the atmosphere. Emissions are expected to increase as the climate continues to warm. Even so, lake carbon budgets are currently poorly constrained. This is in part because of a limited understanding of the processes that govern the flux. This thesis focuses on the physical and biogeochemical drivers of carbon trace gas emissions from three small, post-glacial lakes situated within the Stordalen Mire, a subarctic peatland underlain by thawing permafrost in northern Sweden. A unique, multiyear dataset is used to quantify the importance of different emission pathways – ebullition, turbulence-driven diffusion and release from storage – on short and long timescales. In summer and on seasonal to interannual timescales, emissions are robust functions of thermal energy input. Short-term storage-and-release cycles are governed by kinetic drivers, such as turbulence fuelled by wind shear and, to a lesser extent, by thermal convection. In winter, when the lakes are ice-covered, persistent anoxia and density-driven currents enable methane accumulation at rates exceeding summer emissions. Release at ice-off in spring can constitute the majority of annual methane emissions and scales predictably with ice-cover season length, except in warm winters when snowmelt displaces lake water. Most lake flux studies focus on the warmest summer months and omit the spring efflux, as well as emissions in the colder ice-free months which, because of the well-known temperature-dependency of carbon cycling processes, tend to be low. The latter sampling bias may lead to a substantial overestimation of the ice-free flux in regional and global lake emission budgets. Temperature proxies, potentially combined with gas transfer models, can efficiently gap-fill colder months to arrive at a more representative flux estimate, but important feedbacks, such as lake degassing with increasing wind speed, must be taken into account. The mechanisms emerging from intense study of the Stordalen lakes are likely to be found in a majority of northern lakes, which are small, seasonally ice-covered and of post-glacial origin. However, because gas transfer velocity and temperature sensitivity are spatiotemporally variable, field observations remain essential for the development and calibration of models, and to predict future emissions.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Geokemi (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Geochemistry (hsv//eng)

Keyword

lakes
methane
carbon dioxide
fluxes
gas transfer
proxy
climate change
geokemi
Geochemistry

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Jansen, Joachim, ...
Crill, Patrick, ...
Lorke, Andreas, ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Earth and Relate ...
and Geochemistry
Parts in the series
By the university
Stockholm University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view