SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-186388"
 

Search: onr:"swepub:oai:DiVA.org:su-186388" > Using InSAR to iden...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Using InSAR to identify hydrological connectivity and barriers in a highly fragmented wetland

Liu, Dan (author)
Wang, Xuan (author)
Aminjafari, Saeid (author)
Stockholms universitet,Institutionen för naturgeografi
show more...
Yang, Wei (author)
Cui, Baoshan (author)
Yan, Shengjun (author)
Zhang, Yunlong (author)
Zhu, Jie (author)
Jaramillo, Fernando (author)
Stockholms universitet,Institutionen för naturgeografi,Stockholms universitets Östersjöcentrum
show less...
 (creator_code:org_t)
2020-09-14
2020
English.
In: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 34:23, s. 4417-4430
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Hydrological connectivity is a critical determinant of wetland functions and health, especially in wetlands that have been heavily fragmented and regulated by human activities. However, investigating hydrological connectivity in these wetlands is challenging due to the costs of high-resolution and large-scale monitoring required in order to identify hydrological barriers within the wetlands. To overcome this challenge, we here propose an interferometric synthetic aperture radar (InSAR)-based methodology to map hydrologic connectivity and identify hydrological barriers in fragmented wetlands. This methodology was applied along 70 transects across the Baiyangdian, the largest freshwater wetland in northern China, using Sentinel 1A and 1B data, covering the period 2016-2019. We generated 58 interferograms providing information on relative water level changes across the transects that showed the high coherence needed for the assessment of hydrological connectivity. We mapped the permanent and conditional (temporary) barriers affecting connectivity. In total, 11% of all transects are permanently disconnected by hydrological barriers across all interferograms and 58% of the transects are conditionally disconnected. Areas covered by reed grasslands show the most undisturbed hydrological connectivity while some of these barriers are the result of ditches and channels within the wetland and low water levels during different periods of the year. This study highlights the potential of the application of Wetland InSAR to determine hydrological connectivity and location of hydrological barriers in highly fragmented wetlands, and facilitates the study of hydrological processes from large spatial scales and long-time scales using remote sensing technique.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences (hsv//eng)

Keyword

coherence
fragmented wetland
fringes
hydrological barriers
hydrological connectivity
InSAR

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view