SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-187514"
 

Search: onr:"swepub:oai:DiVA.org:su-187514" > Activation of O(2)a...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Activation of O(2)and NO in heme-copper oxidases - mechanistic insights from computational modelling

Blomberg, Margareta R. A. (author)
Stockholms universitet,Institutionen för organisk kemi
 (creator_code:org_t)
2020
2020
English.
In: Chemical Society Reviews. - : Royal Society of Chemistry (RSC). - 0306-0012 .- 1460-4744. ; 49:20, s. 7301-7330
  • Research review (peer-reviewed)
Abstract Subject headings
Close  
  • Heme-copper oxidases are transmembrane enzymes involved in aerobic and anaerobic respiration. The largest subgroup contains the cytochromecoxidases (CcO), which reduce molecular oxygen to water. A significant part of the free energy released in this exergonic process is conserved as an electrochemical gradient across the membrane,viatwo processes, electrogenic chemistry and proton pumping. A deviant subgroup is the cytochromecdependent NO reductases (cNOR), which reduce nitric oxide to nitrous oxide and water. This is also an exergonic reaction, but in this case none of the released free energy is conserved. Computational studies applying hybrid density functional theory to cluster models of the bimetallic active sites in the heme-copper oxidases are reviewed. To obtain a reliable description of the reaction mechanisms, energy profiles of the entire catalytic cycles, including the reduction steps have to be constructed. This requires a careful combination of computational results with certain experimental data. Computational studies have elucidated mechanistic details of the chemical parts of the reactions, involving cleavage and formation of covalent bonds, which have not been obtainable from pure experimental investigations. Important insights regarding the mechanisms of energy conservation have also been gained. The computational studies show that the reduction potentials of the active site cofactors in the CcOs are large enough to afford electrogenic chemistry and proton pumping,i.e.efficient energy conservation. These results solve a conflict between different types of experimental data. A mechanism for the proton pumping, involving a specific and crucial role for the active site tyrosine, conserved in all CcOs, is suggested. For thecNORs, the calculations show that the low reduction potentials of the active site cofactors are optimized for fast elimination of the toxic NO molecules. At the same time, the low reduction potentials lead to endergonic reduction steps with high barriers. To prevent even higher barriers, which would lead to a too slow reaction, when the electrochemical gradient across the membrane is present, the chemistry must occur in a non-electrogenic manner. This explains why there is no energy conservation incNOR.

Subject headings

NATURVETENSKAP  -- Kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences (hsv//eng)

Publication and Content Type

ref (subject category)
for (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Blomberg, Margar ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Chemical Science ...
Articles in the publication
Chemical Society ...
By the university
Stockholm University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view