SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-192778"
 

Search: onr:"swepub:oai:DiVA.org:su-192778" > Downflowing umbral ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Downflowing umbral flashes as evidence of standing waves in sunspot umbrae

Felipe, T. (author)
Henriques, V. M. J. (author)
de la Cruz Rodríguez, Jaime (author)
Stockholms universitet,Institutionen för astronomi
show more...
Socas-Navarro, H. (author)
show less...
 (creator_code:org_t)
2021-01-26
2021
English.
In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Context. Umbral flashes are sudden brightenings commonly visible in the core of some chromospheric lines. Theoretical and numerical modeling suggests that they are produced by the propagation of shock waves. According to these models and early observations, umbral flashes are associated with upflows. However, recent studies have reported umbral flashes in downflowing atmospheres.Aims. We aim to understand the origin of downflowing umbral flashes. We explore how the existence of standing waves in the umbral chromosphere impacts the generation of flashed profiles.Methods. We performed numerical simulations of wave propagation in a sunspot umbra with the code MANCHA. The Stokes profiles of the CaII 8542 Å line were synthesized with the NICOLE code.Results. For freely propagating waves, the chromospheric temperature enhancements of the oscillations are in phase with velocity upflows. In this case, the intensity core of the CaII 8542 Å atmosphere is heated during the upflowing stage of the oscillation. However, a different scenario with a resonant cavity produced by the sharp temperature gradient of the transition region leads to chromospheric standing oscillations. In this situation, temperature fluctuations are shifted backward and temperature enhancements partially coincide with the downflowing stage of the oscillation. In umbral flash events produced by standing oscillations, the reversal of the emission feature is produced when the oscillation is downflowing. The chromospheric temperature keeps increasing while the atmosphere is changing from a downflow to an upflow. During the appearance of flashed CaII 8542 Å cores, the atmosphere is upflowing most of the time, and only 38% of the flashed profiles are associated with downflows.Conclusions. We find a scenario that remarkably explains the recent empirical findings of downflowing umbral flashes as a natural consequence of the presence of standing oscillations above sunspot umbrae.

Subject headings

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)

Keyword

methods: numerical
Sun: chromosphere
Sun: oscillations
sunspots
techniques: polarimetric

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Felipe, T.
Henriques, V. M. ...
de la Cruz Rodrí ...
Socas-Navarro, H ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Physical Science ...
Articles in the publication
Astronomy and As ...
By the university
Stockholm University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view