SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-194141"
 

Search: onr:"swepub:oai:DiVA.org:su-194141" > Topolectric circuits :

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Topolectric circuits : Theory and construction

Dong, Junkai (author)
Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany.;Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA.
Juričič, Vladimir (author)
KTH,Stockholms universitet,Nordiska institutet för teoretisk fysik (Nordita),Universidad Técnica Federico Santa María, Chile,Nordic Institute for Theoretical Physics NORDITA,Stockholm Univ, Roslagstullsbacken 23, S-10691 Stockholm, Sweden.;Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110, Valparaiso, Chile.
Roy, Bitan (author)
Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany.;Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA.
Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany;Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA. Nordiska institutet för teoretisk fysik (Nordita) (creator_code:org_t)
American Physical Society (APS), 2021
2021
English.
In: Physical Review Research. - : American Physical Society (APS). - 2643-1564. ; 3:2
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • We highlight a general theory to engineer arbitrary Hermitian tight-binding lattice models in electrical LC circuits, where the lattice sites are replaced by the electrical nodes, connected to its neighbors and to the ground by capacitors and inductors. In particular, by supplementing each node with n subnodes, where the phases of the current and voltage are the n distinct roots of unity, one can in principle realize arbitrary hopping amplitude between the sites or nodes via the shift capacitor coupling between them. This general principle is then implemented to construct a plethora of topological models in electrical circuits, topolectric circuits, where the robust zero-energy topological boundary modes manifest through a large boundary impedance, when the circuit is tuned to the resonance frequency. The simplicity of our circuit constructions is based on the fact that the existence of the boundary modes relies only on the Clifford algebra of the corresponding Hermitian matrices entering the Hamiltonian and not on their particular representation. This in turn enables us to implement a wide class of topological models through rather simple topolectric circuits with nodes consisting of only two subnodes. We anchor these outcomes from the numerical computation of the on-resonance impedance in circuit realizations of first-order (m = 1), such as Chern and quantum spin Hall insulators, and second- (m = 2) and third- (m = 3) order topological insulators in different dimensions, featuring sharp localization on boundaries of codimensionality d(c) = m. Finally, we subscribe to the stacked topolectric circuit construction to engineer three-dimensional Weyl, nodal-loop, quadrupolar Dirac, and Weyl semimetals, respectively, displaying surface- and hinge-localized impedance.

Subject headings

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)
NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)

Keyword

Topological materials
Topological phases of matter

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view