SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-207277"
 

Search: onr:"swepub:oai:DiVA.org:su-207277" > Warm and moist air ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Warm and moist air intrusions into the winter Arctic : a Lagrangian view on the near-surface energy budgets

You, Cheng, 1990- (author)
Stockholms universitet,Meteorologiska institutionen (MISU)
Tjernström, Michael, 1955- (author)
Stockholms universitet,Meteorologiska institutionen (MISU)
Devasthale, Abhay (author)
 (creator_code:org_t)
2022-06-21
2022
English.
In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:12, s. 8037-8057
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • In this study, warm and moist air intrusions (WaMAIs) over the Arctic Ocean sectors of Barents Sea, Kara Sea, Laptev Sea, East Siberian Sea, Chukchi Sea, and Beaufort Sea in 40 recent winters (from 1979 to 2018) are identified from the ERAS reanalysis using both Eulerian and Lagrangian views. The analysis shows that WaMAIs, fueled by Arctic blocking, cause a relative surface warming and hence a sea-ice reduction by exerting positive anomalies of net thermal irradiances and turbulent fluxes on the surface. Over Arctic Ocean sectors with land-locked sea ice in winter, such as Laptev Sea, East Siberian Sea, Chukchi Sea, and Beaufort Sea, the total surface energy-budget is dominated by net thermal irradiance. From a Lagrangian perspective, total water path (TWP) increases linearly with the downstream distance from the sea-ice edge over the completely ice-covered sectors, inducing almost linearly increasing net thermal irradiance and total surface energy-budget. However, over the Barents Sea, with an open ocean to the south, total net surface energy-budget is dominated by the surface turbulent flux. With the energy in the warm-and-moist air continuously transported to the surface, net surface turbulent flux gradually decreases with distance, especially within the first 2 degrees north of the ice edge, inducing a decreasing but still positive total surface energy-budget. The boundary-layer energy-budget patterns over the Barents Sea can be categorized into three classes: radiation-dominated, turbulence-dominated, and turbulence-dominated with cold dome, comprising about 52 %, 40 %, and 8 % of all WaMAIs, respectively. Statistically, turbulence-dominated cases with or without cold dome occur along with 1 order of magnitude larger large-scale subsidence than the radiation-dominated cases. For the turbulence-dominated category, larger turbulent fluxes are exerted to the surface, probably because of stronger wind shear. In radiation-dominated WaMAIs, stratocumulus develops more strongly and triggers intensive cloud-top radiative cooling and related buoyant mixing that extends from cloud top to the surface, inducing a thicker well-mixed layer under the cloud. With the existence of cold dome, fewer liquid water clouds were formed, and less or even negative turbulent fluxes could reach the surface.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
You, Cheng, 1990 ...
Tjernström, Mich ...
Devasthale, Abha ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Earth and Relate ...
Articles in the publication
Atmospheric Chem ...
By the university
Stockholm University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view