SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-220941"
 

Search: onr:"swepub:oai:DiVA.org:su-220941" > Controlling factors...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Chen, Nai-Chen,1985-Stockholms universitet,Institutionen för geologiska vetenskaper,National Taiwan University, Taiwan (author)

Controlling factors on patterns of dissolved organic carbon and volatile fatty acids in a submarine mud volcano offshore southwestern Taiwan

  • Article/chapterEnglish2023

Publisher, publication year, extent ...

  • 2023
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:su-220941
  • https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-220941URI
  • https://doi.org/10.3389/feart.2023.1210088DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • Dissolved organic carbon (DOC) and volatile fatty acids (VFAs) play key roles in the carbon cycling of marine sediment. Both microbially or thermally activated cracking of organic matter often produces high quantities of DOC and VFAs. To uncover the distribution pattern of DOC and VFAs in sediments under both impacts, a submarine mud volcano (SMV), was chosen to denote a model system that could witness how microbial activities react under the mixing of seawater and deeply-sourced fluids in a subsurface environment. We examined the concentration profiles of DOC and several VFAs (lactate, formate, acetate, propionate, and butyrate) in pore water, covering both sulfate reduction and methanogenesis zones, and further numerically modeled six porewater species (DOC, bromide, calcium, magnesium, ammonium, and total alkalinity) to quantify their fluxes from depth as well as the rates of in-situ microbial processes. Apparently, bulk DOC concentrations fluctuated with depths, probably primarily controlled by in situ microbial processes. Lactate was detectable in some samples, while propionate and butyrate were under detection limit. Acetate and formate concentrations were consistently and uniformly low throughout all biogeochemical zones, with a slightly increasing trend with depth at the center of the SMV, suggesting active utilization and turnover by the terminal steps of organic matter mineralization. The numerical modeling suggests that most DOC patterns were primarily influenced by in-situ organic matter degradation, while the impact of upward migrating fluid become more significant at center sites. The calculation of the Gibbs energy of metabolic redox reactions reveals that acetoclastic sulfate reduction yields the highest energy throughout sediment columns and may co-exist with methanogenesis below sulfate reduction zone. In contrast, acetoclastic methanogenesis yields higher energy within sulfate reduction zone than below that region, suggesting it is thermodynamically feasible to co-occur with sulfate reduction in dynamic SMV environments.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Yang, Tsanyao Frank (author)
  • Liou, Ya-Hsuan (author)
  • Lin, Huei-Ting Tina (author)
  • Hong, Wei-Li,1982-Stockholms universitet,Institutionen för geologiska vetenskaper(Swepub:su)weho1955 (author)
  • Lin, Saulwood (author)
  • Su, Chih-Chieh (author)
  • Lin, Li-Hung (author)
  • Wang, Pei-Ling (author)
  • Stockholms universitetInstitutionen för geologiska vetenskaper (creator_code:org_t)

Related titles

  • In:Frontiers in Earth Science112296-6463

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view