SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-220977"
 

Search: onr:"swepub:oai:DiVA.org:su-220977" > Quinone Catalysis M...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Quinone Catalysis Modulates Proton Transfer Reactions in the Membrane Domain of Respiratory Complex I

Kim, Hyunho, 1993- (author)
Stockholms universitet,Institutionen för biokemi och biofysik
Saura, Patricia, 1988- (author)
Stockholms universitet,Institutionen för biokemi och biofysik
Pöverlein, Maximilian C., 1997- (author)
Stockholms universitet,Institutionen för biokemi och biofysik
show more...
Gamiz-Hernandez, Ana P., 1975- (author)
Stockholms universitet,Institutionen för biokemi och biofysik
Kaila, Ville R. I., 1983- (author)
Stockholms universitet,Institutionen för biokemi och biofysik
show less...
 (creator_code:org_t)
2023
2023
English.
In: Journal of the American Chemical Society. - 0002-7863 .- 1520-5126. ; 145:31, s. 17075-17086
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Complex I is a redox-driven proton pump that drives electron transport chains and powers oxidative phosphorylation across all domains of life. Yet, despite recently resolved structures from multiple organisms, it still remains unclear how the redox reactions in Complex I trigger proton pumping up to 200 Å away from the active site. Here, we show that the proton-coupled electron transfer reactions during quinone reduction drive long-range conformational changes of conserved loops and trans-membrane (TM) helices in the membrane domain of Complex I from Yarrowia lipolytica. We find that the conformational switching triggers a π → α transition in a TM helix (TM3ND6) and establishes a proton pathway between the quinone chamber and the antiporter-like subunits, responsible for proton pumping. Our large-scale (>20 μs) atomistic molecular dynamics (MD) simulations in combination with quantum/classical (QM/MM) free energy calculations show that the helix transition controls the barrier for proton transfer reactions by wetting transitions and electrostatic effects. The conformational switching is enabled by re-arrangements of ion pairs that propagate from the quinone binding site to the membrane domain via an extended network of conserved residues. We find that these redox-driven changes create a conserved coupling network within the Complex I superfamily, with point mutations leading to drastic activity changes and mitochondrial disorders. On a general level, our findings illustrate how catalysis controls large-scale protein conformational changes and enables ion transport across biological membranes. 

Subject headings

NATURVETENSKAP  -- Biologi -- Biofysik (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biophysics (hsv//eng)
NATURVETENSKAP  -- Kemi -- Teoretisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Theoretical Chemistry (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view