SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-221235"
 

Search: onr:"swepub:oai:DiVA.org:su-221235" > Contrasting Drought...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Contrasting Drought Propagation Into the Terrestrial Water Cycle Between Dry and Wet Regions

Li, Wantong (author)
Reichstein, Markus (author)
O, Sungmin (author)
show more...
May, Carla (author)
Destouni, Georgia, 1961- (author)
Stockholms universitet,Institutionen för naturgeografi
Migliavacca, Mirco (author)
Kraft, Basil (author)
Weber, Ulrich (author)
Orth, Rene (author)
show less...
 (creator_code:org_t)
2023
2023
English.
In: Earth's Future. - 2328-4277. ; 11:7
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Drought's intensity and duration have increased in many regions over the last decades. However, the propagation of drought-induced water deficits through the terrestrial water cycle is not fully understood at a global scale. Here we study responses of monthly evaporation (ET) and runoff to soil moisture droughts occurring between 2001 and 2015 using independent gridded datasets based on machine learning-assisted upscaling of satellite and in-situ observations. We find that runoff and ET show generally contrasting drought responses across climate regimes. In wet regions, runoff is strongly reduced while ET is decoupled from soil moisture decreases and enhanced by sunny and warm weather typically accompanying soil moisture droughts. In drier regions, ET is reduced during droughts due to vegetation water stress, while runoff is largely unchanged as precipitation deficits are typically low in these regions and ET decreases are buffering runoff reductions. While these water flux drought responses are controlled by the large-scale climate regimes, they are additionally modulated by local vegetation characteristics. Land surface models capture the observed water cycle responses to drought in the case of runoff, but not for ET where the ET deficit (surplus) is overestimated (underestimated), related to a misrepresentation of the general soil moisture-evaporation interplay. In summary, our study illustrates how the joint analysis of machine learning-enhanced Earth observations can advance the understanding of global eco-hydrological processes, as well as the validation of land surface models.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Oceanografi, hydrologi och vattenresurser (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Oceanography, Hydrology and Water Resources (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view