SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-63731"
 

Search: onr:"swepub:oai:DiVA.org:su-63731" > Unimolecular dissoc...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Johansson, Henrik A. B.Stockholms universitet,Fysikum (author)

Unimolecular dissociation of anthracene and acridine cations : The importance of isomerization barriers for the C2H2 loss and HCN loss channels

  • Article/chapterEnglish2011

Publisher, publication year, extent ...

  • AIP Publishing,2011
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:su-63731
  • https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-63731URI
  • https://doi.org/10.1063/1.3626792DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • The loss of C2H2 is a low activation energy dissociation channel for anthracene (C14H10) and acridine (C13H9N) cations. For the latter ion another prominent fragmentation pathway is the loss of HCN. We have studied these two dissociation channels by collision induced dissociation experiments of 50 keV anthracene cations and protonated acridine, both produced by electrospray ionization, in collisions with a neutral xenon target. In addition, we have carried out density functional theory calculations on possible reaction pathways for the loss of C2H2 and HCN. The mass spectra display features of multi-step processes, and for protonated acridine the dominant first step process is the loss of a hydrogen from the N site, which then leads to C2H2/HCN loss from the acridine cation. With our calculations we have identified three pathways for the loss of C2H2 from the anthracene cation, with three different cationic products: 2-ethynylnaphthalene, biphenylene, and acenaphthylene. The third product is the one with the overall lowest dissociation energy barrier. For the acridine cation our calculated pathway for the loss of C2H2 leads to the 3-ethynylquinoline cation, and the loss of HCN leads to the biphenylene cation. Isomerization plays an important role in the formation of the non-ethynyl containing products. All calculated fragmentation pathways should be accessible in the present experiment due to substantial energy deposition in the collisions.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Zettergren, HenningStockholms universitet,Fysikum(Swepub:su)henning (author)
  • Holm, Anne I. S.Stockholms universitet,Fysikum(Swepub:su)anhol (author)
  • Haag, NicoleStockholms universitet,Fysikum (author)
  • Brøndsted Nielsen, S. (author)
  • Wyer, J. A. (author)
  • Kirketerp, M.-B. S. (author)
  • Støchkel, K. (author)
  • Hvelplund, P. (author)
  • Schmidt, Henning T.Stockholms universitet,Fysikum(Swepub:su)schmidt (author)
  • Cederquist, HenrikStockholms universitet,Fysikum(Swepub:su)cederq (author)
  • Stockholms universitetFysikum (creator_code:org_t)

Related titles

  • In:Journal of Chemical Physics: AIP Publishing135, s. 084304-0021-96061089-7690

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view