SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-81705"
 

Search: onr:"swepub:oai:DiVA.org:su-81705" > Temperature charact...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments

Sawicka, Joanna E. (author)
Stockholms universitet,Institutionen för geologiska vetenskaper
Jorgensen, B. B. (author)
Bruchert, Volker (author)
Stockholms universitet,Institutionen för geologiska vetenskaper
 (creator_code:org_t)
2012-08-30
2012
English.
In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 9:8, s. 3425-3435
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The temperature responses of sulfate-reducing microbial communities were used as community temperature characteristics for their in situ temperature adaptation, their origin, and dispersal in the deep sea. Sediments were collected from a suite of coastal, continental shelf, and slope sediments from the southwest and southeast Atlantic and permanently cold Arctic fjords from water depths ranging from the intertidal zone to 4327 m. In situ temperatures ranged from 8 A degrees C on the shelf to -1 A degrees C in the Arctic. Temperature characteristics of the active sulfate-reducing community were determined in short-term incubations with S-35-sulfate in a temperature gradient block spanning a temperature range from 0 to 40 A degrees C. An optimum temperature (T-opt) between 27 A degrees C and 30 A degrees C for the South Atlantic shelf sediments and for the intertidal flat sediment from Svalbard was indicative of a psychrotolerant/mesophilic sulfate-reducing community, whereas T-opt < 20 A degrees C in South Atlantic slope and Arctic shelf sediments suggested a predominantly psychrophilic community. High sulfate reduction rates (20-50%) at in situ temperatures compared to those at T-opt further support this interpretation and point to the importance of the ambient temperature regime for regulating the short-term temperature response of sulfate-reducing communities. A number of cold (< 4 A degrees C) continental slope sediments showed broad temperature optima reaching as high as 30 A degrees C, suggesting the additional presence of apparently mesophilic sulfate-reducing bacteria. Since the temperature characteristics of these mesophiles do not fit with the permanently cold deep-sea environment, we suggest that these mesophilic microorganisms are of allochthonous origin and transported to this site. It is likely that they were deposited along with the mass-flow movement of warmer shelf-derived sediment. These data therefore suggest that temperature response profiles of bacterial carbon mineralization processes can be used as community temperature characteristics, and that mixing of bacterial communities originating from diverse locations carrying different temperature characteristics needs to be taken into account to explain temperature response profiles of bacterial carbon mineralization processes in sediments.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Sawicka, Joanna ...
Jorgensen, B. B.
Bruchert, Volker
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Earth and Relate ...
Articles in the publication
Biogeosciences
By the university
Stockholm University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view