SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:su-84774"
 

Search: onr:"swepub:oai:DiVA.org:su-84774" > Prioritizing Chemic...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Arnot, Jon A. (author)

Prioritizing Chemicals and Data Requirements for Screening-Level Exposure and Risk Assessment

  • Article/chapterEnglish2012

Publisher, publication year, extent ...

  • Environmental Health Perspectives,2012
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:su-84774
  • https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-84774URI
  • https://doi.org/10.1289/ehp.1205355DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • AuthorCount:5;
  • BACKGROUND: Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources. OBJECTIVES: We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments. METHODS: We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified. RESULTS: Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients. CONCLUSIONS: Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Brown, Trevor N. (author)
  • Wania, Frank (author)
  • Breivik, Knut (author)
  • McLachlan, Michael S.Stockholms universitet,Institutionen för tillämpad miljövetenskap (ITM)(Swepub:su)mmcla (author)
  • Stockholms universitetInstitutionen för tillämpad miljövetenskap (ITM) (creator_code:org_t)

Related titles

  • In:Journal of Environmental Health Perspectives: Environmental Health Perspectives120:11, s. 1565-15700091-67651552-9924

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view