SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:umu-14188"
 

Search: onr:"swepub:oai:DiVA.org:umu-14188" > Structure, dynamics...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Structure, dynamics and topology of membrane polypeptides by oriented 2H solid-state NMR spectroscopy

Aisenbrey, Christopher (author)
Umeå universitet,Kemiska institutionen
Bertani, Philippe (author)
Henklein, Peter (author)
show more...
Bechinger, Burkhard (author)
show less...
 (creator_code:org_t)
2006-12-19
2007
English.
In: European Biophysics Journal. - : Springer Science and Business Media LLC. - 0175-7571 .- 1432-1017. ; 36:4-5, s. 451-60
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Knowledge of the structure, dynamics and interactions of polypeptides when associated with phospholipid bilayers is key to understanding the functional mechanisms of channels, antibiotics, signal- or translocation peptides. Solid-state NMR spectroscopy on samples uniaxially aligned relative to the magnetic field direction offers means to determine the alignment of polypeptide bonds and domains relative to the bilayer normal. Using this approach the 15N chemical shift of amide bonds provides a direct indicator of the approximate helical tilt, whereas the 2H solid-state NMR spectra acquired from peptides labelled with 3,3,3-2H3-alanines contain valuable complimentary information for a more accurate analysis of tilt and rotation pitch angles. The deuterium NMR line shapes are highly sensitive to small variations in the alignment of the Cα–Cβ bond relative to the magnetic field direction and, therefore, also the orientational distribution of helices relative to the membrane normal. When the oriented membrane samples are investigated with their normal perpendicular to the magnetic field direction, the rate of rotational diffusion can be determined in a semi-quantitative manner and thereby the aggregation state of the peptides can be analysed. Here the deuterium NMR approach is first introduced showing results from model amphipathic helices. Thereafter investigations of the viral channel peptides Vpu1–27 and Influenza A M222–46 are shown. Whereas the 15N chemical shift data confirm the transmembrane helix alignments of these hydrophobic sequences, the deuterium spectra indicate considerable mosaic spread in the helix orientations. At least two peptide populations with differing rotational correlation times are apparent in the deuterium spectra of the viral channels suggesting an equilibrium between monomeric peptides and oligomeric channel configurations under conditions where solid-state NMR structural studies of these peptides have previously been performed.

Keyword

Transmembrane channel protein
Oriented lipid bilayer
Amphipathic α-helix
Membrane protein structure determination
Topology
Angular restraints
Tilt and rotational pitch angle
Vpu
Influenza M2

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view