SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:umu-180732"
 

Search: onr:"swepub:oai:DiVA.org:umu-180732" > Strategies to Enhan...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Strategies to Enhance Implantation and Survival of Stem Cells After Their Injection in Ischemic Neural Tissue

Sandvig, Ioanna (author)
Gadjanski, Ivana (author)
Vlaski-Lafarge, Marija (author)
show more...
Buzanska, Leonora (author)
Loncaric, Darija (author)
Sarnowska, Ana (author)
Rodriguez, Laura (author)
Sandvig, Axel (author)
Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Division of Pharmacology and Clinical Neurosciences, Department of Neurosurgery and Clinical Neurophysiology, Umeå University Hospital, Umeå, Sweden
Ivanovic, Zoran (author)
show less...
 (creator_code:org_t)
Mary Ann Liebert, 2017
2017
English.
In: Stem Cells and Development. - : Mary Ann Liebert. - 1547-3287 .- 1557-8534. ; 26:8, s. 554-565
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • High post-transplantation cell mortality is the main limitation of various approaches that are aimed at improving regeneration of injured neural tissue by an injection of neural stem cells (NSCs) and mesenchymal stromal cells (MStroCs) in and/or around the lesion. Therefore, it is of paramount importance to identify efficient ways to increase cell transplant viability. We have previously proposed the "evolutionary stem cell paradigm," which explains the association between stem cell anaerobic/microaerophilic metabolic set-up and stem cell self-renewal and inhibition of differentiation. Applying these principles, we have identified the main critical point in the collection and preparation of these cells for experimental therapy: exposure of the cells to atmospheric O2, that is, to oxygen concentrations that are several times higher than the physiologically relevant ones. In this way, the primitive anaerobic cells become either inactivated or adapted, through commitment and differentiation, to highly aerobic conditions (20%-21% O2 in atmospheric air). This inadvertently compromises the cells' survival once they are transplanted into normal tissue, especially in the hypoxic/anoxic/ischemic environment, which is typical of central nervous system (CNS) lesions. In addition to the findings suggesting that stem cells can shift to glycolysis and can proliferate in anoxia, recent studies also propose that stem cells may be able to proliferate in completely anaerobic or ischemic conditions by relying on anaerobic mitochondrial respiration. In this systematic review, we propose strategies to enhance the survival of NSCs and MStroCs that are implanted in hypoxic/ischemic neural tissue by harnessing their anaerobic nature and maintaining as well as enhancing their anaerobic properties via appropriate ex vivo conditioning.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Neurologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Neurology (hsv//eng)

Keyword

anaerobiosis
hypoxia
ischemia
neural regeneration
stem cells
stroke
Neurology
neurologi

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view