SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:umu-1968"
 

Search: onr:"swepub:oai:DiVA.org:umu-1968" > Immunopathogenesis ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Andersson, Marie,1962-Umeå universitet,Institutionen för molekylärbiologi (Medicinska fakulteten) (author)

Immunopathogenesis of relapsing fever borreliosis

  • BookEnglish2008

Publisher, publication year, extent ...

  • Umeå :Molekylärbiologi (Medicinska fakulteten),2008
  • 102 s.
  • electronicrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:umu-1968
  • ISBN:9789172647107
  • https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1968URI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:vet swepub-contenttype
  • Subject category:dok swepub-publicationtype

Series

  • Umeå University medical dissertations,0346-6612 ;1236

Notes

  • Relapsing fever (RF) is caused by different species of Borrelia transmitted by soft ticks or by the human body louse. Illness is characterized by reappearing peaks of high concentrations of spirochetes in blood, concordant with fever peaks separated by asymptomatic periods. Neuroborreliosis is one of the most severe manifestations of RF borreliosis. To understand the immune response during early RF, we analyzed immune cells in brain and kidney of mice infected with B. crocidurae during the acute infection. Our results indicate that brain defense is comprised primarily of innate immune cells. Despite the infiltration of innate immune cells, Borrelia was not completely eradicated. A failure of the host brain to clear the bacteria may give the pathogen a niche where it can persist. Using our mouse model, we revealed that Borrelia duttonii could persist in the mouse brain for up to 270 days, without being present in the circulation. The infection was silent with no change in host gene expression, and the spirochetes could re-enter the circulation after immunosuppression. We propose that the brain is used by the pathogen to evade host immunity and serves as a possible natural reservoir for B. duttonii, a spirochete that has rarely been found in any mammalian host other than man. Borrelia-induced complications during pregnancy have been reported, and are especially common in RF. In our established mouse model of gestational RF, we could show that the fetuses suffered from severe pathology and growth retardation, probably as a consequence of placental destruction. We could also show trans-placental transmission of the bacteria leading to neonatal RF. Surprisingly, pregnant dams had a lower bacterial load and less severe disease, showing that pregnancy has a protective effect during RF. We have used the gestational RF model to investigate host factors favoring disease resolution. Because the spleen is the primary organ responsible for trapping and removing blood-borne pathogens, we have compared temporal changes in spleen immune cell populations and cytokine/chemokine induction during the infection. Spleens of pregnant mice had earlier neutrophil infiltration, as well as faster and higher production of pro-inflammatory mediators. This rapid, robust response suggests a more effective host defense. Thus, an enhanced pro-inflammatory response during pregnancy imparts a distinct advantage in controlling the severity of relapsing fever infection.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Bergström, Sven,ProfessorUmeå universitet,Institutionen för molekylärbiologi (Medicinska fakulteten)(Swepub:umu)svbe0001 (thesis advisor)
  • Guo, Betty P.,PhDUmeå universitet,Institutionen för molekylärbiologi (Medicinska fakulteten) (thesis advisor)
  • Weis, Janis J.,ProfessorDepartnent of Pathology, University of Utah (opponent)
  • Umeå universitetInstitutionen för molekylärbiologi (Medicinska fakulteten) (creator_code:org_t)

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view