SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:umu-201165"
 

Search: onr:"swepub:oai:DiVA.org:umu-201165" > TMEM16A calcium-act...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Henriques, TiagoNeurobiology Group, International School for Advanced Studies, Trieste, Italy (author)

TMEM16A calcium-activated chloride currents in supporting cells of the mouse olfactory epithelium

  • Article/chapterEnglish2019

Publisher, publication year, extent ...

  • 2019-05-02
  • Rockefeller University Press,2019
  • electronicrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:umu-201165
  • https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-201165URI
  • https://doi.org/10.1085/jgp.201812310DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • Glial-like supporting (or sustentacular) cells are important constituents of the olfactory epithelium that are involved in several physiological processes such as production of endocannabinoids, insulin, and ATP and regulation of the ionic composition of the mucus layer that covers the apical surface of the olfactory epithelium. Supporting cells express metabotropic P2Y purinergic receptors that generate ATP-induced Ca2+ signaling through the activation of a PLC-mediated cascade. Recently, we reported that a subpopulation of supporting cells expresses also the Ca2+-activated Cl− channel TMEM16A. Here, we sought to extend our understanding of a possible physiological role of this channel in the olfactory system by asking whether Ca2+ can activate Cl− currents mediated by TMEM16A. We use whole-cell patch-clamp analysis in slices of the olfactory epithelium to measure dose–response relations in the presence of various intracellular Ca2+ concentrations, ion selectivity, and blockage. We find that knockout of TMEM16A abolishes Ca2+-activated Cl− currents, demonstrating that TMEM16A is essential for these currents in supporting cells. Also, by using extracellular ATP as physiological stimuli, we found that the stimulation of purinergic receptors activates a large TMEM16A-dependent Cl− current, indicating a possible role of TMEM16A in ATP-mediated signaling. Altogether, our results establish that TMEM16A-mediated currents are functional in olfactory supporting cells and provide a foundation for future work investigating the precise physiological role of TMEM16A in the olfactory system.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Agostinelli, EmilioNeurobiology Group, International School for Advanced Studies, Trieste, Italy (author)
  • Hernandez-Clavijo, AndresNeurobiology Group, International School for Advanced Studies, Trieste, Italy (author)
  • Maurya, Devendra KumarNeurobiology Group, International School for Advanced Studies, Trieste, Italy(Swepub:umu)deku0003 (author)
  • Rock, Jason R.Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA (author)
  • Harfe, Brian D.Department of Molecular Genetics and Microbiology Genetics Institute, University of Florida, College of Medicine, Gainesville, FL (author)
  • Menini, AnnaNeurobiology Group, International School for Advanced Studies, Trieste, Italy (author)
  • Pifferi, SimoneNeurobiology Group, International School for Advanced Studies, Trieste, Italy (author)
  • Neurobiology Group, International School for Advanced Studies, Trieste, ItalyCenter for Regenerative Medicine, Boston University School of Medicine, Boston, MA (creator_code:org_t)

Related titles

  • In:The Journal of General Physiology: Rockefeller University Press151:7, s. 954-9660022-12951540-7748

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view