SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:umu-44656"
 

Search: onr:"swepub:oai:DiVA.org:umu-44656" > Photosynthetic elec...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Photosynthetic electron transport adjustments in overwintering Scots pine (Pinus sylvestris L.)

Ivanov, A G (author)
Sane, P V (author)
Zeinalov, Y (author)
show more...
Malmberg, G (author)
Gardeström, Per, 1950- (author)
Umeå universitet,Institutionen för fysiologisk botanik,Umeå Plant Science Centre (UPSC)
Huner, N P A (author)
Oquist, Gunnar, 1941- (author)
Umeå universitet,Institutionen för fysiologisk botanik,Umeå Plant Science Centre (UPSC)
show less...
 (creator_code:org_t)
2001
2001
English.
In: Planta. - 0032-0935 .- 1432-2048. ; 213:4, s. 575-585
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • As shown before [C. Ottander et al. (1995) Planta 197:176-183], there is a severe inhibition of the photosystem (PS) II photochemical efficiency of Scots pine (Pinus sylvestris L.) during the winter. In contrast, the in vivo PSI photochemistry is less inhibited during winter as shown by in vivo measurements of DeltaA(820)/Delta (820) (P700(+)). There was also an enhanced cyclic electron transfer around PSI in winter-stressed needles as indicated by 4-fold faster reduction kinetics of P700(+). The differential functional stability of PSII and PSI was accompanied by a 3.7-fold higher intersystem electron pool size, and a 5-fold increase in the stromal electron pool available for P700(+) reduction. There was also a strong reduction of the QB band in the thermoluminescence glow curve and markedly slower Q-A re-oxidation in needles of winter pine, indicating an inhibition of electron transfer between QA and QB. The data presented indicate that the plastoquinone pool is largely reduced in winter pine, and that this reduced state is likely to be of metabolic rather than photochemical origin. The retention of PSI photochemistry, and the suggested metabolic reduction of the plastoquinone pool in winter stressed needles of Scots pine are discussed in terms of the need for enhanced photoprotection of the needles during the winter and the role of metabolically supplied energy for the recovery of photosynthesis from winter stress in evergreens.

Keyword

electron transport
P700
photosynthesis
Pinus (winter stress)
thermoluminescence
winter stress

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

  • Planta (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view