SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-122335"
 

Search: onr:"swepub:oai:DiVA.org:uu-122335" > Rhizoids and proton...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Rhizoids and protonemata of characean algae : model cells for research on polarized growth and plant gravity sensing

Braun, Markus (author)
Limbach, Christoph (author)
Gravitationsbiologie, Institut für Molekulare Physiologie und Biotechnologie der Pflanzen, Universität Bonn, Bonn,Kilimann
 (creator_code:org_t)
2006-12-16
2006
English.
In: Protoplasma. - : Springer. - 0033-183X .- 1615-6102. ; 229:2-4, s. 133-142
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  •  Gravitropically tip-growing rhizoids and protonemata of characean algae are well-established unicellular plant model systems for research on gravitropism. In recent years, considerable progress has been made in the understanding of the cellular and molecular mechanisms underlying gravity sensing and gravity-oriented growth. While in higherplant statocytes the role of cytoskeletal elements, especially the actin cytoskeleton, in the mechanisms of gravity sensing is still enigmatic, there is clear evidence that in the characean cells actin is intimately involved in polarized growth, gravity sensing, and the gravitropic response mechanisms. The multiple functions of actin are orchestrated by a variety of actin-binding proteins which control actin polymerisation, regulate the dynamic remodelling of the actin filament architecture, and mediate the transport of vesicles and organelles. Actin and a steep gradient of cytoplasmic free calcium are crucial components of a feedback mechanism that controls polarized growth. Experiments performed in microgravity provided evidence that actomyosin is a key player for gravity sensing: it coordinates the position of statoliths and, upon a change in the cell’s orientation, directs sedimenting statoliths to specific areas of the plasma membrane, where contact with membrane-bound gravisensor molecules elicits short gravitropic pathways. In rhizoids, gravitropic signalling leads to a local reduction of cytoplasmic free calcium and results in differential growth of the opposite subapical cell flanks. The negative gravitropic response of protonemata involves actin-dependent relocation of the calcium gradient and displacement of the centre of maximal growth towards the upper flank. On the basis of the results obtained from the gravitropic model cells, a similar fine-tuning function of the actomyosin system is discussed for the early steps of gravity sensing in higher-plant statocytes.

Subject headings

NATURVETENSKAP  -- Biologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences (hsv//eng)

Keyword

Actin
Actin-binding protein
Chara spp.
Gravity sensing
Protonema
Rhizoid
Tip growth
Biology
Biologi

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Braun, Markus
Limbach, Christo ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
Articles in the publication
Protoplasma
By the university
Uppsala University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view