SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-132015"
 

Search: onr:"swepub:oai:DiVA.org:uu-132015" > Calcium signaling i...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Calcium signaling in the islets

Islam, M. Shahidul (author)
Karolinska Institutet,Uppsala universitet,Medicin
 (creator_code:org_t)
2010-01-15
2010
English.
In: Advances in Experimental Medicine and Biology. - Dordrecht : Springer Netherlands. - 0065-2598 .- 2214-8019. ; 654, s. 235-259
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Easy access to rodent islets and insulinoma cells and the ease of measuring Ca(2+) by fluorescent indicators have resulted in an overflow of data that have clarified minute details of Ca(2+) signaling in the rodent islets. Our understanding of the mechanisms and the roles of Ca(2+) signaling in the human islets, under physiological conditions, has been hugely influenced by uncritical extrapolation of the rodent data obtained under suboptimal experimental conditions. More recently, electrophysiological and Ca(2+) studies have elucidated the ion channel repertoire relevant for Ca(2+) signaling in the human islets and have examined their relative importance. Many new channels belonging to the transient receptor potential (TRP) family are present in the beta-cells. Ryanodine receptors, nicotinic acid adenine dinucleotide phosphate channel, and Ca(2+)-induced Ca(2+) release add new dimension to the complexity of Ca(2+) signaling in the human beta-cells. A lot more needs to be learnt about the roles of these new channels and CICR, not because that will be easy but because that will be difficult. Much de-learning will also be needed. Human beta-cells do not have a resting state in the normal human body even under physiological fasting conditions. Their membrane potential under physiologically relevant resting conditions is approximately -50 mV. Biphasic insulin secretion is an experimental epiphenomenon unrelated to the physiological pulsatile insulin secretion into the portal vein in the human body. Human islets show a wide variety of electrical activities and patterns of [Ca(2+)](i) changes, whose roles in mediating pulsatile secretion of insulin into the portal vein remain questionable. Future studies will hopefully be directed toward a better understanding of Ca(2+) signaling in the human islets in the context of the pathogenesis and treatment of human diabetes.

Keyword

MEDICINE
MEDICIN

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Islam, M. Shahid ...
Articles in the publication
Advances in Expe ...
By the university
Uppsala University
Karolinska Institutet

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view