SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-140038"
 

Search: onr:"swepub:oai:DiVA.org:uu-140038" > On the mechanism of...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Liberman, M. A.Uppsala universitet,Institutionen för fysik och astronomi (author)

On the mechanism of the deflagration-to-detonation transition in a hydrogen-oxygen mixture

  • Article/chapterEnglish2010

Publisher, publication year, extent ...

  • 2010
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:uu-140038
  • https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-140038URI
  • https://doi.org/10.1134/S1063776110100201DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • The flame acceleration and the physical mechanism underlying the deflagration-to-detonation transition (DDT) have been studied experimentally, theoretically, and using a two-dimensional gasdynamic model for a hydrogen-oxygen gas mixture by taking into account the chain chemical reaction kinetics for eight components. A flame accelerating in a tube is shown to generate shock waves that are formed directly at the flame front just before DDT occurred, producing a layer of compressed gas adjacent to the flame front. A mixture with a density higher than that of the initial gas enters the flame front, is heated, and enters into reaction. As a result, a high-amplitude pressure peak is formed at the flame front. An increase in pressure and density at the leading edge of the flame front accelerates the chemical reaction, causing amplification of the compression wave and an exponentially rapid growth of the pressure peak, which "drags" the flame behind. A high-amplitude compression wave produces a strong shock immediately ahead of the reaction zone, generating a detonation wave. The theory and numerical simulations of the flame acceleration and the new physical mechanism of DDT are in complete agreement with the experimentally observed flame acceleration, shock formation, and DDT in a hydrogen-oxygen gas mixture.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Ivanov, M. F. (author)
  • Kiverin, A. D. (author)
  • Kuznetsov, M. S. (author)
  • Rakhimova, T. V. (author)
  • Chukalovskii, A. A. (author)
  • Uppsala universitetInstitutionen för fysik och astronomi (creator_code:org_t)

Related titles

  • In:Journal of Experimental and Theoretical Physics111:4, s. 684-6981063-77611090-6509

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view