SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-140057"
 

Search: onr:"swepub:oai:DiVA.org:uu-140057" > KRAS analysis in co...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

KRAS analysis in colorectal carcinoma : analytical aspects of Pyrosequencing and allele-specific PCR in clinical practice

Sundström, Magnus (author)
Uppsala universitet,Institutionen för genetik och patologi
Edlund, Karolina (author)
Uppsala universitet,Institutionen för genetik och patologi
Lindell, Monica (author)
Uppsala universitet,Institutionen för genetik och patologi
show more...
Glimelius, Bengt (author)
Karolinska Institutet,Uppsala universitet,Institutionen för onkologi, radiologi och klinisk immunologi
Birgisson, Helgi (author)
Uppsala universitet,Kolorektalkirurgi
Micke, Patrick (author)
Uppsala universitet,Institutionen för genetik och patologi
Botling, Johan (author)
Uppsala universitet,Institutionen för genetik och patologi
show less...
 (creator_code:org_t)
2010-12-01
2010
English.
In: BMC Cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 10, s. 660-
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Background: Epidermal growth factor receptor inhibitor therapy is now approved for treatment of metastatic colorectal carcinomas (CRC) in patients with tumors lacking KRAS mutations. Several procedures to detect KRAS mutations have been developed. However, the analytical sensitivity and specificity of these assays on routine clinical samples are not yet fully characterised.Methods: The practical aspects and clinical applicability of a KRAS-assay based on Pyrosequencing were evaluated in a series of 314 consecutive CRC cases submitted for diagnostic KRAS analysis. The performance of Pyrosequencing compared to allele-specific, real-time PCR was then explored by a direct comparison of CE-IVD-marked versions of Pyrosequencing and TheraScreen (DxS) KRAS assays for a consecutive subset (n = 100) of the 314 clinical CRC samples.Results: Using Pyrosequencing, 39% of the 314 CRC samples were found KRAS-mutated and several of the mutations (8%) were located in codon 61. To explore the analytical sensitivity of the Pyrosequencing assay, mutated patient DNA was serially diluted with wild-type patient DNA. Dilutions corresponding to 1.25-2.5% tumor cells still revealed detectable mutation signals. In clinical practice, our algorithm for KRAS analysis includes a reanalysis of samples with low tumor cell content (< 10%, n = 56) using an independent assay (allele-specific PCR, DxS). All mutations identified by Pyrosequencing were then confirmed and, in addition, one more mutated sample was identified in this subset of 56 samples. Finally, a direct comparison of the two technologies was done by re-analysis of a subset (n = 100) of the clinical samples using CE-IVD-marked versions of Pyrosequencing and TheraScreen KRAS assays in a single blinded fashion. The number of samples for which the KRAS codon 12/13 mutation status could be defined using the Pyrosequencing or the TheraScreen assay was 94 and 91, respectively, and both assays detected the same number of codon 12 and 13 mutations.Conclusions: KRAS mutation detection using Pyrosequencing was evaluated on a consecutive set of clinical CRC samples. Pyrosequencing provided sufficient analytical sensitivity and specificity to assess the mutation status in routine formalin-fixed CRC samples, even in tissues with a low tumor cell content.

Keyword

MEDICINE
MEDICIN

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

  • BMC Cancer (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view