SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-183314"
 

Search: onr:"swepub:oai:DiVA.org:uu-183314" > Loss of muscle stre...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Loss of muscle strength during sepsis is in part regulated by glucocorticoids and is associated with reduced muscle fiber stiffness

Alamdari, Nima (author)
Toraldo, Gianluca (author)
Aversa, Zaira (author)
show more...
Smith, Ira J (author)
Castillero, Estibaliz (author)
Renaud, Guillaume (author)
Uppsala universitet,Klinisk neurofysiologi
Qaisar, Rizwan (author)
Uppsala universitet,Klinisk neurofysiologi
Larsson, Lars (author)
Uppsala universitet,Klinisk neurofysiologi
Jasuja, Ravi (author)
Hasselgren, Per-Olof (author)
show less...
 (creator_code:org_t)
American Physiological Society, 2012
2012
English.
In: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 303:10, s. R1090-R1099
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Sepsis is associated with impaired muscle function but the role of glucocorticoids in sepsis-induced muscle weakness is not known. We tested the role of glucocorticoids in sepsis-induced muscle weakness by treating septic rats with the glucocorticoid receptor antagonist RU38486. In addition, normal rats were treated with dexamethasone to further examine the role of glucocorticoids in the regulation of muscle strength. Sepsis was induced in rats by cecal ligation and puncture and muscle force generation (peak twitch and tetanic tension) was determined in lower extremity muscles. In other experiments, absolute and specific force as well as stiffness (reflecting the function of actomyosin cross-bridges) were determined in isolated skinned muscle fibers from control and septic rats. Sepsis and treatment with dexamethasone resulted in reduced maximal twitch and tetanic force in intact isolated extensor digitorum longus muscles. The absolute and specific maximal force in isolated muscle fibers was reduced during sepsis together with decreased fiber stiffness. These effects of sepsis were blunted (but not abolished) by RU38486. The results suggest that muscle weakness during sepsis is at least in part regulated by glucocorticoids and reflects loss of contractility at the cellular (individual muscle fiber) level. In addition, the results suggest that reduced function of the cross-bridges between actin and myosin (documented as reduced muscle fiber stiffness) may be involved in sepsis-induced muscle weakness. An increased understanding of mechanisms involved in loss of muscle strength will be important for the development of new treatment strategies in patients with this debilitating consequence of sepsis.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Klinisk laboratoriemedicin (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Clinical Laboratory Medicine (hsv//eng)

Keyword

Clinical Neurophysiology
Klinisk neurofysiologi

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view