SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-217208"
 

Search: onr:"swepub:oai:DiVA.org:uu-217208" > A universal scaling...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Campione, Nicolas E. (author)

A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods

  • Article/chapterEnglish2012

Publisher, publication year, extent ...

  • 2012-07-10
  • BioMed Central,2012
  • electronicrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:uu-217208
  • https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-217208URI
  • https://doi.org/10.1186/1741-7007-10-60DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • BackgroundBody size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights.ResultsSignificant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa.ConclusionsThe conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Evans, David C.Royal Ontario Museum (author)
  • Royal Ontario Museum (creator_code:org_t)

Related titles

  • In:BMC Biology: BioMed Central10, s. 60-1741-7007

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Campione, Nicola ...
Evans, David C.
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Evolutionary Bio ...
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Ecology
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Zoology
Articles in the publication
BMC Biology
By the university
Uppsala University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view