SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-222723"
 

Search: onr:"swepub:oai:DiVA.org:uu-222723" > Broadband ferromagn...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Broadband ferromagnetic resonance system and methods for ultrathin magnetic films

Montoya, Eric (author)
McKinnon, Tommy (author)
Zamani, Atieh (author)
Uppsala universitet,Materialfysik
show more...
Girt, Erol (author)
Heinrich, Bret (author)
show less...
 (creator_code:org_t)
Elsevier BV, 2014
2014
English.
In: Journal of Magnetism and Magnetic Materials. - : Elsevier BV. - 0304-8853 .- 1873-4766. ; 356, s. 12-20
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Spintronics requires the development, of magnetic thin film structures having a wide range of magnetic properties. Ferromagnetic resonance (FMR) is a well understood experimental technique that has proven to be an invaluable tool to probe the static and dynamic magnetic properties of ultrathin films, multilayer nanostructures, and super lattices. In order to achieve a full characterization of thin film materials, one Reeds to carry out FMR measurements at a wide range of microwave frequencies. In this paper, we show that one does not have to use a broadband vector network analyzer; similar performance can be achieved by using a broadband microwave signal generator, a coplanar waveguide, and a broadband microwave detector. To obtain a good signal to noise ratio, one needs to employ a modulation technique in order to use lock-in detection; in this paper, we use low frequency external field modulation (105 Hz) and microwave power amplitude pulse modulation (10 kHz). The sensitivity and he performance of this broadband microwave system is demonstrated on two types of samples: molecular beam epitaxy grown single crystal GaAs(001)/Fe/Au and sputter deposit:cc! textured Si(111)/Ta/Ru/Co/Ru superlattice structures. The samples were mounted on a coplanar waveguide, allowing one a broadband measurement, similar to 0.1-50 GHz, of DC field swept FMR signals. The results are compared to traditional field swept, field modulated measurements in microwave cavity resonators. Despite the fact that the FMR signal can be very different from that obtained by standard microwave cavities, we show that the analysis of the FMR signal is fairly simple using an admixture of the in-phase and out-of-phase components of rf susceptibility and that the resulting fitted magnetic parameters are in excellent agreement. Additionally, we demonstrate that microwave power amplitude pulse modulation can be used to greatly speed up data collection times, especially for very weak and broad FMR signals.

Keyword

Ferromagnetic resonance
Coplanar waveguide
Ultrathin magnetic films
Magnetic nanostructure
Magnetic anisotropy
Magnetic damping

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view