SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-233632"
 

Search: onr:"swepub:oai:DiVA.org:uu-233632" > Porosity prediction...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Porosity prediction of calcium phosphate cements based on chemical composition

Öhman, Caroline (author)
Uppsala universitet,Tillämpad materialvetenskap,Materials in Medicine
Unosson, Johanna (author)
Uppsala universitet,Tillämpad materialvetenskap,Materials in Medicine
Carlsson, Elin (author)
Uppsala universitet,Tillämpad materialvetenskap
show more...
Ginebra, Maria-Pau (author)
Technical University of Catalonia, Spain
Persson, Cecilia (author)
Uppsala universitet,Tillämpad materialvetenskap,Materials in Medicine
Engqvist, Håkan (author)
Uppsala universitet,Tillämpad materialvetenskap,Materials in Medicine
show less...
 (creator_code:org_t)
2015-07-14
2015
English.
In: Journal of materials science. Materials in medicine. - : Springer Science and Business Media LLC. - 0957-4530 .- 1573-4838. ; 26:7
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The porosity of calcium phosphate cements has an impact on several important parameters, such as strength, resorbability and bioactivity. A model to predict the porosity for biomedical cements would hence be a useful tool. At the moment such a model only exists for Portland cements. The aim of this study was to develop and validate a first porosity prediction model for calcium phosphate cements. On the basis of chemical reaction, molar weight and density of components, a volume-based model was developed and validated using calcium phosphate cement as model material. 60 mol% beta-tricalcium phosphate and 40 mol% monocalcium phosphate monohydrate were mixed with deionized water, at different liquid-to-powder ratios. Samples were set for 24 h at 37 degrees C and 100 % relative humidity. Thereafter, samples were dried either under vacuum at room temperature for 24 h or in air at 37 degrees C for 7 days. Porosity and phase composition were determined. It was found that the two drying protocols led to the formation of brushite and monetite, respectively. The model was found to predict well the experimental values and also data reported in the literature for apatite cements, as deduced from the small absolute average residual errors (<2.0 %). In conclusion, a theoretical model for porosity prediction was developed and validated for brushite, monetite and apatite cements. The model gives a good estimate of the final porosity and has the potential to be used as a porosity prediction tool in the biomedical cement field.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Keramteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Ceramics (hsv//eng)

Keyword

Teknisk fysik med inriktning mot materialvetenskap
Engineering Science with specialization in Materials Science

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view