SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-239579"
 

Search: onr:"swepub:oai:DiVA.org:uu-239579" > Range shift and int...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Range shift and introgression of the rear and leading populations in two ecologically distinct Rubus species

Mimura, Makiko (author)
Mishima, Misako (author)
Lascoux, Martin (author)
Uppsala universitet,Växtekologi och evolution
show more...
Yahara, Tetsukazu (author)
show less...
 (creator_code:org_t)
2014-10-25
2014
English.
In: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 14, s. 209-
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Background: The margins of a species' range might be located at the margins of a species' niche, and in such cases, can be highly vulnerable to climate changes. They, however, may also undergo significant evolutionary changes due to drastic population dynamics in response to climate changes, which may increase the chances of isolation and contact among species. Such species interactions induced by climate changes could then regulate or facilitate further responses to climatic changes. We hypothesized that climate changes lead to species contacts and subsequent genetic exchanges due to differences in population dynamics at the species boundaries. We sampled two closely related Rubus species, one temperate (Rubus palmatus) and the other subtropical (R. grayanus) near their joint species boundaries in southern Japan. Coalescent analysis, based on molecular data and ecological niche modelling during the Last Glacial Maximum (LGM), were used to infer past population dynamics. At the contact zones on Yakushima (Yaku Island), where the two species are parapatrically distributed, we tested hybridization along altitudinal gradients. Results: Coalescent analysis suggested that the southernmost populations of R. palmatus predated the LGM (similar to 20,000 ya). Conversely, populations at the current northern limit of R. grayanus diverged relatively recently and likely represent young outposts of a northbound range shift. These population dynamics were partly supported by the ensemble forecasting of six different species distribution models. Both past and ongoing hybridizations were detected near and on Yakushima. Backcrosses and advanced-generation hybrids likely generated the clinal hybrid zones along altitudinal gradients on the island where the two species are currently parapatrically distributed. Conclusions: Climate oscillations during the Quaternary Period and the response of a species in range shifts likely led to repeated contacts with the gene pools of ecologically distinct relatives. Such species interactions, induced by climate changes, may bring new genetic material to the marginal populations where species tend to experience more extreme climatic conditions at the margins of the species distribution.

Subject headings

NATURVETENSKAP  -- Biologi -- Evolutionsbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Evolutionary Biology (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Mimura, Makiko
Mishima, Misako
Lascoux, Martin
Yahara, Tetsukaz ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Evolutionary Bio ...
Articles in the publication
BMC Evolutionary ...
By the university
Uppsala University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view