SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-251372"
 

Search: onr:"swepub:oai:DiVA.org:uu-251372" > Multi-scale Inferen...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Multi-scale Inference of Interaction Rules in Animal Groups Using Bayesian Model Selection

Mann, Richard P. (author)
Uppsala universitet,Analys och tillämpad matematik
Perna, Andrea (author)
Uppsala universitet,Analys och tillämpad matematik
Strömbom, Daniel (author)
Uppsala universitet,Analys och tillämpad matematik
show more...
Garnett, Roman (author)
Herbert-Read, James E. (author)
Sumpter, David J. T. (author)
Uppsala universitet,Analys och tillämpad matematik
Ward, Ashley J. W. (author)
show less...
 (creator_code:org_t)
2013-03-21
2013
English.
In: PloS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 9:3
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Inference of interaction rules of animals moving in groups usually relies on an analysis of large scale system behaviour. Models are tuned through repeated simulation until they match the observed behaviour. More recent work has used the fine scale motions of animals to validate and fit the rules of interaction of animals in groups. Here, we use a Bayesian methodology to compare a variety of models to the collective motion of glass prawns (Paratya australiensis). We show that these exhibit a stereotypical 'phase transition', whereby an increase in density leads to the onset of collective motion in one direction. We fit models to this data, which range from: a mean-field model where all prawns interact globally; to a spatial Markovian model where prawns are self-propelled particles influenced only by the current positions and directions of their neighbours; up to non-Markovian models where prawns have 'memory' of previous interactions, integrating their experiences over time when deciding to change behaviour. We show that the mean-field model fits the large scale behaviour of the system, but does not capture the observed locality of interactions. Traditional self-propelled particle models fail to capture the fine scale dynamics of the system. The most sophisticated model, the non-Markovian model, provides a good match to the data at both the fine scale and in terms of reproducing global dynamics, while maintaining a biologically plausible perceptual range. We conclude that prawns' movements are influenced by not just the current direction of nearby conspecifics, but also those encountered in the recent past. Given the simplicity of prawns as a study system our research suggests that self-propelled particle models of collective motion should, if they are to be realistic at multiple biological scales, include memory of previous interactions and other non-Markovian effects.

Subject headings

NATURVETENSKAP  -- Matematik -- Matematisk analys (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Mathematical Analysis (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view