SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-313969"
 

Search: onr:"swepub:oai:DiVA.org:uu-313969" > Epigenetic Control ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Epigenetic Control of Phenotypic Plasticity in the Filamentous Fungus Neurospora crassa

Kronholm, Ilkka (author)
Univ Jyvaskyla, Dept Biol & Environm Sci, Ctr Excellence Biol Interact, POB 35, FI-40014 Jyvaskyla, Finland.
Johannesson, Hanna (author)
Uppsala universitet,Systematisk biologi
Ketola, Tarmo (author)
Univ Jyvaskyla, Dept Biol & Environm Sci, Ctr Excellence Biol Interact, POB 35, FI-40014 Jyvaskyla, Finland.
Univ Jyvaskyla, Dept Biol & Environm Sci, Ctr Excellence Biol Interact, POB 35, FI-40014 Jyvaskyla, Finland Systematisk biologi (creator_code:org_t)
2016-12-01
2016
English.
In: G3. - : Oxford University Press (OUP). - 2160-1836. ; 6:12, s. 4009-4022
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Phenotypic plasticity is the ability of a genotype to produce different phenotypes under different environmental or developmental conditions. Phenotypic plasticity is a ubiquitous feature of living organisms, and is typically based on variable patterns of gene expression. However, the mechanisms by which gene expression is influenced and regulated during plastic responses are poorly understood in most organisms. While modifications to DNA and histone proteins have been implicated as likely candidates for generating and regulating phenotypic plasticity, specific details of each modification and its mode of operation have remained largely unknown. In this study, we investigated how epigenetic mechanisms affect phenotypic plasticity in the filamentous fungus Neurospora crassa. By measuring reaction norms of strains that are deficient in one of several key physiological processes, we show that epigenetic mechanisms play a role in homeostasis and phenotypic plasticity of the fungus across a range of controlled environments. In general, effects on plasticity are specific to an environment and mechanism, indicating that epigenetic regulation is context dependent and is not governed by general plasticity genes. Specifically, we found that, in Neurospora, histone methylation at H3K36 affected plastic response to high temperatures, H3K4 methylation affected plastic response to pH, but H3K27 methylation had no effect. Similarly, DNA methylation had only a small effect in response to sucrose. Histone deacetylation mainly decreased reaction norm elevation, as did genes involved in histone demethylation and acetylation. In contrast, the RNA interference pathway was involved in plastic responses to multiple environments.

Subject headings

NATURVETENSKAP  -- Biologi -- Genetik (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Genetics (hsv//eng)

Keyword

reaction norm
DNA methylation
histone methylation
histone deacetylation
RNA interference
fungi

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

  • G3 (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Kronholm, Ilkka
Johannesson, Han ...
Ketola, Tarmo
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Genetics
Articles in the publication
G3
By the university
Uppsala University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view