SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-314035"
 

Search: onr:"swepub:oai:DiVA.org:uu-314035" > Self Powered Neutro...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Self Powered Neutron Detectors as in-core detectors for Sodium-cooled Fast Reactors

Verma, Vasudha, 1988- (author)
Uppsala universitet,Tillämpad kärnfysik,CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, France,Fission Diagnostics and Safeguards
Loic, Barbot (author)
CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, France
Filliatre, Philippe (author)
CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, France
show more...
Hellesen, Carl, 1980- (author)
Uppsala universitet,Tillämpad kärnfysik,Fission Diagnostics and Safeguards
Jammes, Christian (author)
CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, France
Jacobsson Svärd, Staffan, 1970- (author)
Uppsala universitet,Tillämpad kärnfysik,Fission Diagnostics and Safeguards
show less...
 (creator_code:org_t)
Elsevier BV, 2017
2017
English.
In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 860, s. 6-12
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction.In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

Subject headings

NATURVETENSKAP  -- Fysik -- Annan fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Other Physics Topics (hsv//eng)

Keyword

Sodium cooled fast reactors
Self powered neutron detector
Instrumentation
Core monitoring
In-core detection

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view