SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-320156"
 

Search: onr:"swepub:oai:DiVA.org:uu-320156" > On-chip growth of p...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

On-chip growth of patterned ZnO nanorod sensors with PdO decoration for enhancement of hydrogen-sensing performance

Jiao, Mingzhi (author)
Uppsala universitet,Mikrosystemteknik
Nguyen, Van Duy (author)
Hanoi Univ Sci & Technol, ITIMS, Hanoi, Vietnam
Nguyen, Viet Chien (author)
Hanoi Univ Sci & Technol, ITIMS, Hanoi, Vietnam
show more...
Nguyen, Duc Hoa (author)
Hanoi Univ Sci & Technol, ITIMS, Hanoi, Vietnam
Nguyen, Van Hieu (author)
Hanoi Univ Sci & Technol, ITIMS, Hanoi, Vietnam
Hjort, Klas, 1964- (author)
Uppsala universitet,Mikrosystemteknik
Nguyen, Hugo, 1955- (author)
Uppsala universitet,Mikrosystemteknik
show less...
 (creator_code:org_t)
Elsevier BV, 2017
2017
English.
In: International journal of hydrogen energy. - : Elsevier BV. - 0360-3199 .- 1879-3487. ; 42:25, s. 16294-16304
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • In this study, we used a low-temperature hydrothermal technique to fabricate arrays of sensors with ZnO nanorods grown on-chip. The sensors on the glass substrate then were sputter decorated with Pd at thicknesses of 2, 4, and 8 nm and annealed at 650 °C in air for an hour. Scanning electron microscopy, high resolution transmission microscopy, X-ray diffraction, and surface analysis by X-ray photoelectron spectroscopy characterization demonstrated that decoration of homogenous PdO nanoparticles on the surface of ZnO nanorods had been achieved. The sensors were tested against three reducing gases, namely hydrogen, ethanol, and ammonia, at 350, 400, and 450 °C. The ZnO nanorods decorated with PdO particles from the 2 and 4 nm layers showed the highest responses to H2 at 450 and 350 °C, respectively. These samples also generally exhibited better selectivity for hydrogen than for ethanol and ammonia at the same concentrations and at all tested temperatures. However, the ZnO nanorods decorated with PdO particles from the 8 nm layer showed a reverse sensing behaviour compared with the first two. The sensing mechanism behind these phenomena is discussed in the light of the spillover effect of hydrogen in contact with the PdO particles as well as the negative competition of the PdO thin film formed between the sensor electrodes during sputter decoration, Pd-Zn heterojunction that forms at high temperature and thus influences the conductivity of the ZnO nanorods.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Annan materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Other Materials Engineering (hsv//eng)

Keyword

Hydrogen-sensing at high temperature; On-chip hydrothermal growth; ZnO nanorods; Sputter-decoration; PdO nanoparticles

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view