SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-360241"
 

Search: onr:"swepub:oai:DiVA.org:uu-360241" > Microgels as Carrie...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Microgels as Carriers for Antimicrobial Peptides : Surface-bound microgels, and factors affecting peptide interactions

Nyström, Lina (author)
Uppsala universitet,Institutionen för farmaci
Malmsten, Martin, Professor (thesis advisor)
Uppsala universitet,Institutionen för farmaci
Hansson, Per, Professor (thesis advisor)
Uppsala universitet,Institutionen för farmaci
show more...
Lyon, L. Andrew, Professor (opponent)
Schmid College of Science and Technology, Chapman University
show less...
 (creator_code:org_t)
ISBN 9789151304731
Uppsala : Acta Universitatis Upsaliensis, 2018
English 66 s.
Series: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, 1651-6192 ; 259
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • With a growing number of multi-resistant bacteria against conventional antibiotics, there is an urgent need to identify new antimicrobial therapeutics. One example that has gained considerable interest is antimicrobial peptides (AMPs). For AMPs to reach their full potential as therapeutics, as well as for other peptide and protein drugs, the right drug delivery system may overcome reported shortcomings, such as fast clearance in the bloodstream and proteolytic degradation. Microgels are weakly cross-linked polymer colloids, which can be made responsive to various stimuli. In the context of drug delivery, microgels are of particular interest as carriers for biomacromolecular drugs, such as peptides and proteins, as their water-rich environment offers both protection against enzymatic degradation and triggered release possibilities. Combining these, the aim of this thesis was to investigate electrostatically triggered surface-bound microgels as a delivery system for AMPs, as well as evaluate such systems as an antimicrobial and anti-inflammatory coating for biomaterials.Results presented in this thesis demonstrate effects of microgel charge density, pH, and ionic strength on microgel volume transitions at solid interfaces, surface-induced microgel deformation and nanomechanical properties. In addition, effects of both microgel properties (charge density) and peptide properties (molecular weight, charge density, and posttranslational modifications) on peptide loading and release from surface-bound microgels were investigated. The presented thesis also reports in vitro studies of AMP-loaded microgels in dispersion and surface-bound, as either mono- or multilayers. Notably, the interplay between surface- and release-related effects for the antimicrobial properties of AMP-loaded microgels are investigated. In addition, anti-inflammatory properties of AMP-loaded microgels are also reported.Taken together, microgels prove an interesting and versatile drug delivery system for AMPs. Results obtained in this thesis have demonstrated that several key factors need to be taken into consideration in the development of surface-bound microgels as a carrier for AMPs, and that small changes in microgel and peptide properties can alter peptide loading and release profiles.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Farmaceutiska vetenskaper (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Pharmaceutical Sciences (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Medicinsk bioteknologi -- Biomaterialvetenskap (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Medical Biotechnology -- Biomaterials Science (hsv//eng)
NATURVETENSKAP  -- Kemi -- Fysikalisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Physical Chemistry (hsv//eng)

Keyword

Antimicrobial peptides
Biomaterial coating
Drug delivery
Host defence peptides
Microgels
pH-responsive
Surface-bound
Pharmaceutical Physical Chemistry
Farmaceutisk fysikalisk kemi

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view