SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-395115"
 

Search: onr:"swepub:oai:DiVA.org:uu-395115" > Rotational and Tran...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Rotational and Translational Diffusion of Proteins as a Function of Concentration

Bashardanesh, Zahedeh (author)
Uppsala universitet,Beräkningsbiologi och bioinformatik,Science for Life Laboratory, SciLifeLab
Elf, Johan (author)
Uppsala universitet,Molekylär systembiologi,Science for Life Laboratory, SciLifeLab
Zhang, Haiyang (author)
University of Science and Technology Beijing, Peoples R China
show more...
Van der Spoel, David (author)
Uppsala universitet,Science for Life Laboratory, SciLifeLab,Beräkningsbiologi och bioinformatik
show less...
 (creator_code:org_t)
2019-11-27
2019
English.
In: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 4:24, s. 20654-20664
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Atomistic simulations of three different proteins at different concentrations are performed to obtain insight into protein mobility as a function of protein concentration. We report on simulations of proteins from diluted to the physiological water concentration (about 70% of the mass). First, the viscosity was computed and found to increase by a factor of 7-9 going from pure water to the highest protein concentration, in excellent agreement with in vivo nuclear magnetic resonance results. At a physiological concentration of proteins, the translational diffusion is found to be slowed down to about 30% of the in vitro values. The slow-down of diffusion found here using atomistic models is slightly more than that of a hard sphere model that neglects the electrostatic interactions. Interestingly, rotational diffusion of proteins is slowed down somewhat more (by about 80-95% compared to in vitro values) than translational diffusion, in line with experimental findings and consistent with the increased viscosity. The finding that rotation is retarded more than translation is attributed to solvent-separated clustering. No direct interactions between the proteins are found, and the clustering can likely be attributed to dispersion interactions that are stronger between proteins than between protein and water. Based on these simulations, we can also conclude that the internal dynamics of the proteins in our study are affected only marginally under crowding conditions, and the proteins become somewhat more stable at higher concentrations. Simulations were performed using a force field that was tuned for dealing with crowding conditions by strengthening the protein-water interactions. This force field seems to lead to a reproducible partial unfolding of an alpha-helix in one of the proteins, an effect that was not observed in the unmodified force field.

Subject headings

NATURVETENSKAP  -- Biologi -- Biofysik (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biophysics (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

  • ACS Omega (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Bashardanesh, Za ...
Elf, Johan
Zhang, Haiyang
Van der Spoel, D ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Biophysics
Articles in the publication
ACS Omega
By the university
Uppsala University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view