SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:uu-409754"
 

Search: onr:"swepub:oai:DiVA.org:uu-409754" > Additively manufact...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Additively manufactured mesh-type titanium structures for cranial implants : E-PBF vs. L-PBF

Lewin, Susanne (author)
Uppsala universitet,Tillämpad materialvetenskap
Fleps, Ingmar (author)
ETH Zurich
Åberg, Jonas, 1982- (author)
Uppsala universitet,Tillämpad materialvetenskap
show more...
Ferguson, Stephen J. (author)
ETH Zurich
Engqvist, Håkan, 1972- (author)
Uppsala universitet,Tillämpad materialvetenskap
Öhman-Mägi, Caroline (author)
Uppsala universitet,Tillämpad materialvetenskap
Helgason, Benedikt (author)
ETH Zurich
Persson, Cecilia (author)
Uppsala universitet,Tillämpad materialvetenskap
show less...
 (creator_code:org_t)
Elsevier, 2021
2021
English.
In: Materials & design. - : Elsevier. - 0264-1275 .- 1873-4197. ; 197
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • A patient-specific titanium-reinforced calcium phosphate (CaP–Ti) cranial implant has recently shown promising clinical results. Currently, its mesh-type titanium structure is additively manufactured using laser beam powder bed fusion (L-PBF). Nevertheless, an electron-beam (E-PBF) process could potentially be more time efficient. This study aimed to compare the geometrical accuracy and mechanical response of thin titanium structures manufactured by L-PBF (HIPed) and E-PBF (as-printed). Tensile test (ø = 1.2 mm) and implant specimens were manufactured. Measurements by μCT revealed a deviation in cross-sectional area as compared to the designed geometry: 13–35% for E-PBF and below 2% for L-PBF. A superior mechanical strength was obtained for the L-PBF specimens, both in the tensile test and the implant compression tests. The global peak load in the implant test was 457 ± 9 N and 846 ± 40 N for E-PBF and L-PBF, respectively. Numerical simulations demonstrated that geometrical deviation was the main factor in implant performance and enabled quantification of this effect: 34–39% reduction in initial peak force based on geometry, and only 11–16% reduction based on the material input. In summary, the study reveals an uncertainty in accuracy when structures of sizes relevant to mesh-type cranial implants are printed by the E-PBF method.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Medicinteknik -- Medicinsk material- och protesteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering -- Medical Materials (hsv//eng)

Keyword

Additive manufacturing
Electron beam melting
Powder bed fusion
Finite element models
Surface roughness
Cranial implant
Engineering Science with specialization in Materials Science
Teknisk fysik med inriktning mot materialvetenskap

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view